**Assignment 4** In our pursuit of a groundbreaking ternary computer system, we'll delineate our proposed strategy for the Instruction Set Architecture (ISA) and memory module design. This comprehensive report will delve into the following segments: **Ternary Logic Operations**: Our ternary computer system aims to encompass a broad spectrum of arithmetic, bitwise, and logical operations. Below outlines the proposed ternary logic operations pivotal to the ISA: **Arithmetic Operations** ->Ternary Addition (+) |A|B|C|Sum|Cout| |-|-|-|-|-| |0|0|0|0|0| |0|0|1|1|0| |0|0|2|2|0| |0|1|0|1|0| |0|1|1|2|0| |0|1|2|0|1| |1|0|0|1|0| |1|0|1|2|0| |1|0|2|0|1| |1|1|0|2|0| |1|1|1|0|1| |1|1|2|1|1| |2|0|0|2|0| |2|0|1|0|1| |2|0|2|1|1| |2|1|0|0|1| |2|1|1|1|1| |2|1|2|2|1| |2|2|0|1|1| |2|2|1|2|1| |2|2|2|0|2| ->Ternary Subtraction (-) |A|B|C|Diff|Borrow| |-|-|-|-|-| |0|0|0|0|0| |0|0|1|2|0| |0|0|2|1|1| |0|1|0|2|0| |0|1|1|0|1| |0|1|2|1|1| |1|0|0|1|0| |1|0|1|0|1| |1|0|2|0|1| |1|1|0|2|0| |1|1|1|0|1| |1|1|2|1|1| |2|0|0|1|1| |2|0|1|0|0| |2|0|2|2|1| |2|1|0|0|1| |2|1|1|1|1| |2|1|2|2|1| |2|2|0|0|0| |2|2|1|1|1| |2|2|2|2|1| Ternary Multiplication (*) |A|B|C|Product| |-|-|-|-| |0|0|0|0| |0|0|1|0| |0|0|2|0| |0|1|0|0| |0|1|1|1| |0|1|2|2| |1|0|0|0| |1|0|1|1| |1|0|2|2| |1|1|0|1| |1|1|1|2| |1|1|2|0| |2|0|0|0| |2|0|1|2| |2|0|2|1| |2|1|0|2| |2|1|1|0| |2|1|2|1| |2|2|0|1| |2|2|1|2| |2|2|2|0| Bitwise Operations Ternary AND (&) |A|B|Result| |-|-|-| |0|0|0| |0|1|0| |0|2|0| |1|0|0| |1|1|1| |1|2|1| |2|0|0| |2|1|1| |2|2|2| Ternary OR (|) |A|B|Result| |-|-|-| |0|0|0| |0|1|1| |0|2|2| |1|0|1| |1|1|1| |1|2|1| |2|0|2| |2|1|1| |2|2|2| Ternary XOR (^) |A|B|Result| |-|-|-| |0|0|0| |0|1|1| |0|2|1| |1|0|1| |1|1|0| |1|2|0| |2|0|1| |2|1|0| |2|2|0| Logical Operations Ternary NOT (!) |A|~A| |-|-| |0|2| |1|1| |2|0| Ternary Equality (==) |A |B |A ≡ B| |-|-|-| |0 |0 |1| |0 |1 |0| |0 |2 |0| |1 |0 |0| |1 |1 |1| |1 |2 |0| |2 |0 |0| |2 |1 |0| |2| 2 |1| Ternary Inequality (!=) |A |B| A ≠ B| |-|-|-| |0 |0 |0| |0 |1 |1| |0 |2 |1| |1 |0 |1| |1| 1 |0| |1 |2 |1| |2| 0 |1| |2 |1 |1| |2 |2 |0| Instruction Encoding: We advocate for a variable-length encoding approach for ternary instructions. Each instruction will consist of multiple ternary digits (trits), with the first trit denoting the operation type and the subsequent trits representing the operands. This encoding schema promises efficient utilization of the ternary logic system. **Pipeline Architecture**: To accommodate ternary logic seamlessly, our pipeline architecture will undergo modifications, incorporating a ternary logic ALU (Arithmetic Logic Unit) and ternary logic instruction decoder. The pipeline stages will mirror those of a conventional CPU: Instruction Fetch (IF) Instruction Decode (ID) Execute (EX) Memory Access (MEM) Write Back (WB) **Address Range and Capacity**: We propose the integration of a ternary addressing system to exponentially expand the memory space. Careful consideration will be given to the implications on physical memory size and access speed. The design of the ternary addressing system will prioritize efficient memory access while mitigating potential performance drawbacks. **Memory Organization**: Innovative organization schemes leveraging ternary logic for denser and more efficient memory storage will be explored. This may entail the utilization of ternary content-addressable memory (TCAM) or alternative ternary memory technologies. The memory organization will be meticulously devised to optimize performance and functionality.