--- title: Thermal Physics tags: 上課筆記 --- # Thermal Physics :::info **thermodynamics:** 大尺度 the arrow of time 時間有一定的演化方向 ::: :::info **statistical mechanics:** 小尺度 time-reversal-invariant 時間反轉不變 ::: ${N_A}$ = $6.02 \times 10^{23}$ $\Omega(狀態數量) = C_{n}^{r}$ #### e.g. 估計$10^{23}!$的數量級: $ln(10^{23}!) \approx 10^{23}ln(10^{23})-10^{23} \approx 5.2 \times 10^{24}$ ==Stiring's formula== $ln(N!) \approx Nln(N) - N$ $\rightarrow$ $\{N | N \gg 1\}$ --- _Temperature_ T $T_A >T_B$:未達熱平衡 **Thermal Equilibrium** 允許兩物體能量交換 $\rightarrow$ 熱接觸thermal contact 達到熱平衡的過程:thermolization 熱化 ### 熱力學第零定律 若物體A和B達熱平衡,B、C亦達平衡,則A、C必達平衡。 --- 溫度絕對定義: * Carnot engine * Boltzmann's definition --- micro表示法: (name, energy) macro表示法: (energy, amount) #### Statistical definition of temperature 1. Postulate of equal a priori probability: For a macrostate in equilibrium all microstates corresponding to that macrostate (equilibrium state) are equally likely. $\rightarrow$ The probability of finding the system in any one of the microstates = $\frac{1}{\Omega}$, where $\Omega \equiv$ number of accessible states 2. The observed macrostate is the one with the most microstates. --- $E_{tot} = E_1 +E_2 = const$ $\Omega_{tot}(E_{tot}) = \Omega_{1}(E_{1}) \cdot \Omega_{2}(E_{2})$ :::info $\Omega_{1}(E_{1}) \cdot \Omega_{2}(E_{2})其實就是聯集的意思。$ ::: When the equilibrium is established, we must have: $\displaystyle \frac{d \Omega_{tot}}{dE_1} = 0$ $\rightarrow i.e.\displaystyle \frac{d}{dE_1}[\Omega_{1}(E_{1}) \cdot \Omega_{2}(E_{2})] = 0$ $\displaystyle\rightarrow \Omega_2\frac{d \Omega_{1}(E_1)}{dE_1} + \Omega_1\frac{d \Omega_{2}(E_2)}{dE_2} \frac{d E_2}{d E_1} = 0$ $\displaystyle\because E_1 + E_2 = const$, $\displaystyle\therefore \frac{d E_2}{d E_1} = -1$ $\displaystyle\rightarrow \Omega_2\frac{d \Omega_{1}}{dE_1} = \Omega_1\frac{d \Omega_{2}}{dE_2}$ $\displaystyle\therefore \frac{1}{\Omega_1}\frac{d \Omega_{1}}{dE_1} = \frac{1}{\Omega_2}\frac{d \Omega_{2}}{dE_2}$ $\displaystyle i.e. \frac{d \ln \Omega_1}{d E_1} = \frac{d \ln \Omega_2}{d E_2}$ According to the $0^{th}$ law, we can define the temperature as $\displaystyle\frac{1}{k_BT} \equiv \frac{d \ln \Omega}{d E}$ Boltzmann constant $k_B = 1.38 \times 10^{-23} J/K$ **The Boltzmann distribution** $\mathcal{P}(E)$ is probability $\varepsilon + E_R = E$ $\because E \gg \varepsilon$ $i.e.E - \varepsilon \gg \varepsilon$ $\therefore \Omega(\varepsilon) \ll \Omega(E - \varepsilon)$ $\mathcal{P}(\varepsilon) \propto \Omega(\varepsilon)\Omega(E - \varepsilon)$ $i.e.\mathcal{P}(\varepsilon) \propto \Omega(E - \varepsilon)$ #### Taylor expand $\displaystyle\ln\Omega(E - \varepsilon)$ around $\varepsilon = 0$ up to $1^{st}$ order: $\displaystyle\ln\Omega(E - \varepsilon) = \displaystyle\ln\Omega(E) - \frac{d\ln\Omega(E)}{dE}\varepsilon + ...$ (因為$\varepsilon$很小,高階項可忽略) $\displaystyle\therefore\ln\Omega(E - \varepsilon) \approx \ln\Omega(E) - \frac{\varepsilon}{k_BT}$ $\rightarrow \Omega(E - \varepsilon) = \Omega(E)e^{- \frac{\varepsilon}{k_BT}}$ * Remark: 1. $\displaystyle e^{-\frac{\varepsilon}{k_BT}}$ is called the Boltzmann factor. 2. Significant probability to reach equilibrium if $\varepsilon <k_BT$. Negligible probability to reach equilibrium if $\varepsilon > k_BT$. 3. if $\varepsilon = E_r$ , then $\displaystyle\mathcal{P}(E_r) = \frac{e^{-E_r/k_BT}}{\displaystyle\sum_i e^{-E_i/k_BT}}$ $E_r$ is random one. 4. $\displaystyle\beta \equiv \frac{1}{k_BT} = \frac{d\ln\Omega}{dE}$ $\therefore \mathcal{P}(E_r) = \frac{e^{-\beta E_r}}{\displaystyle\sum_i e^{-\beta E_i}}$