---
tags: 數學
title: 工程數學ODE
---
<style>
html, body, .ui-content {
background-color: #333;
color: #ddd;
}
body > .ui-infobar {
display: none;
}
.ui-view-area > .ui-infobar {
display: block;
}
.markdown-body h1,
.markdown-body h2,
.markdown-body h3,
.markdown-body h4,
.markdown-body h5,
.markdown-body h6 {
color: #ddd;
}
.markdown-body h1,
.markdown-body h2 {
border-bottom-color: #ffffff69;
}
.markdown-body h1 .octicon-link,
.markdown-body h2 .octicon-link,
.markdown-body h3 .octicon-link,
.markdown-body h4 .octicon-link,
.markdown-body h5 .octicon-link,
.markdown-body h6 .octicon-link {
color: #fff;
}
.markdown-body img {
background-color: transparent;
}
.ui-toc-dropdown .nav>.active:focus>a, .ui-toc-dropdown .nav>.active:hover>a, .ui-toc-dropdown .nav>.active>a {
color: white;
border-left: 2px solid white;
}
.expand-toggle:hover,
.expand-toggle:focus,
.back-to-top:hover,
.back-to-top:focus,
.go-to-bottom:hover,
.go-to-bottom:focus {
color: white;
}
.ui-toc-dropdown {
background-color: #333;
}
.ui-toc-label.btn {
background-color: #191919;
color: white;
}
.ui-toc-dropdown .nav>li>a:focus,
.ui-toc-dropdown .nav>li>a:hover {
color: white;
border-left: 1px solid white;
}
.markdown-body blockquote {
color: #bcbcbc;
}
.markdown-body table tr {
background-color: #5f5f5f;
}
.markdown-body table tr:nth-child(2n) {
background-color: #4f4f4f;
}
.markdown-body code,
.markdown-body tt {
color: #eee;
background-color: rgba(230, 230, 230, 0.36);
}
a,
.open-files-container li.selected a {
color: #5EB7E0;
}
</style>
# <center><font color=#CCFF99>工程數學ODE</font></center>
## <center><font color = #FFFFCC>微分</font></center>
### <font color = #CCFFFF>常數</font>
:::spoiler <font color=#FFCCCC>顯示更多內容</font>
<font color=#CCCCFF>$f(x)=3$,$f'(x)=0$</font>
:::
### <font color = #CCFFFF>單一未知數</font>
:::spoiler <font color=#FFCCCC>顯示更多內容</font>
<font color=#CCCCFF>$f(x)=x$,$f'(x)=1$</font>
<font color=#CCCCFF>$f(x)=x^2$,$f'(x)=2x$</font>
<font color=#CCCCFF>$f(x)=\sqrt{x}$,$f'(x)=\dfrac{1}{2\sqrt{x}}$</font>
:::
### <font color = #CCFFFF>指數函數(e)</font>
:::spoiler <font color=#FFCCCC>顯示更多內容</font>
<font color = #FFCC99>:sparkles:**自然常數(e)上的次方項先微分並與常數項相乘**:sparkles:</font>
<font color=#CCCCFF>$f(x)=e^x$,$f'(x)=e^x$</font>
<font color=#CCCCFF>$f(x)=e^{x^2}$,$f'(x)=2xe^{x^2}$</font>
<font color=#CCCCFF>$f(x)=e^{2x}$,$f'(x)=2e^{2x}$</font>
<font color=#CCCCFF>$f(x)=e^{2x^{2}}$,$f'(x)=4xe^{2x^2}$</font>
:::
### <font color = #CCFFFF>對數函數(ln)</font>
:::spoiler <font color=#FFCCCC>顯示更多內容</font>
<font color = #FFCC99>:sparkles:**自然對數($ln$)微分時,可以不用看常數項**:sparkles:</font>
<font color=#CCCCFF>$f(x)={\ln}(x)$,$f'(x)=\dfrac{1}{x}$</font>
<font color=#CCCCFF>$f(x)={\ln}(2x)$,$f'(x)=\dfrac{1}{x}$</font>
<font color=#CCCCFF>$f(x)={\ln}(x^2)$,$f'(x)=\dfrac{2}{x}$</font>
<font color=#CCCCFF>$f(x)={\ln}(2x^2)$,$f'(x)=\dfrac{2}{x}$</font>
:::
### <font color = #CCFFFF>三角函數</font>
:::spoiler <font color=#FFCCCC>顯示更多內容</font>
<font color=#CCCCFF>$f(x)={\sin}x$,$f'(x)={\cos}x$</font>
<font color=#CCCCFF>$f(x)={\cos}x$,$f'(x)=-{\sin}x$</font>
<font color=#CCCCFF>$f(x)=-{\sin}x$,$f'(x)=-{\cos}x$</font>
<font color=#CCCCFF>$f(x)=-{\cos}x$,$f'(x)={\sin}x$</font>
:::
### <font color = #CCFFFF>反三角函數(arc)</font>
:::spoiler <font color=#FFCCCC>顯示更多內容</font>
<font color=#CCCCFF>$f(x)={\sin}^{-1}x$,$f'(x)=\dfrac{1}{\sqrt{1-x^2}}$</font>
<font color=#CCCCFF>$f(x)={\cos}^{-1}x$,$f'(x)=\dfrac{-1}{\sqrt{1-x^2}}$</font>
<font color=#CCCCFF>$f(x)={\tan}^{-1}x$,$f'(x)=\dfrac{1}{1+x^2}$</font>
<font color=#CCCCFF>$f(x)={\sec}^{-1}x$,$f'(x)=\dfrac{1}{1+x^2}$</font>
<font color=#CCCCFF>$f(x)={\cot}^{-1}x$,$f'(x)=\dfrac{1}{|x|\sqrt{x^2-1}}$</font>
<font color=#CCCCFF>$f(x)={\csc}^{-1}x$,$f'(x)=\dfrac{-1}{|x|\sqrt{x^2-1}}$</font>
:::
## <center><font color = #FFFFCC>積分</font></center>
### <font color = #CCFFFF>常數</font>
:::spoiler <font color=#FFCCCC>顯示更多內容</font>
<font color=#CCCCFF>$f(x)=\int3dx$,$3x=c$</font>
:::
### <font color = #CCFFFF>單一未知數</font>
:::spoiler <font color=#FFCCCC>顯示更多內容</font>
<font color = #FFCC99>**:sparkles:次方項先+1,在放至常數項的分母**:sparkles:</font>
<font color=#CCCCFF>$f(x)=\int xdx$,$\dfrac{1}{2}x^2=c$</font>
<font color=#CCCCFF>$f(x)=\int x^2dx$,$\dfrac{1}{3}x^3=c$</font>
<font color=#CCCCFF>$f(x)=\int 2x^2dx$,$\dfrac{2}{3}x^3=c$</font>
<font color=#CCCCFF>$f(x)=\int{\sqrt{x}}dx$,$\dfrac{2}{3}x^{\dfrac{3}{2}}=c$</font>
:::
### <font color = #CCFFFF>指數函數(e)</font>
:::spoiler <font color=#FFCCCC>顯示更多內容</font>
<font color=#CCCCFF>$f(x)=\int e^xdx$,$e^x=c$</font>
<font color=#CCCCFF>$f(x)=\int 2xe^xdx$,$2e^x(x-1)=c$</font> <font color=#99CC99>(分部積分)</font>
<font color=#CCCCFF>$f(x)=\int {4x^2}e^{2x}dx$,$e^{2x}(2x^2-2x+1)=c$</font> <font color=#99CC99>(分部積分)</font>
<font color=#CCCCFF>$f(x)=\int xe^{x^{2}}dx$,$\dfrac{1}{2}e^{2x}=c$</font> <font color=#99CC99>(變數變換)</font>
:::
### <font color = #CCFFFF>對數函數(ln)</font>
:::spoiler <font color=#FFCCCC>顯示更多內容</font>
<font color = #FFCC99>:sparkles:**自然對數($ln$)積分時,80%使用分部積分**:sparkles:</font>
<font color=#CCCCFF>$f(x)=\int{\ln}(x)$,$x({\ln}x-1)=c$</font> <font color=#99CC99>(分部積分)</font>
:::
## <center><font color = #FFFFCC>小技巧</font></center>
### <font color = #CCFFFF><center>部分分式展開</center></font>
:::spoiler <font color=#FFCCCC>顯示範例</font>
<font color=#CCCCFF>$\dfrac{1}{x(x-2)}=0$</font>
<font color=#FFCC99>Step1.將分式看成$\dfrac{1}{x}與\dfrac{1}{x-2}$兩項</font>
<font color=#FFCC99>Step2.計算$x$項的分子時,$\dfrac{1}{x}$要為$0$,所以$x$要設為$0$,將$x=0$帶入$\dfrac{1}{x-2}$,得出$x$項分子為$\dfrac{1}{2}$</font>
<font color=#FFCC99>Step3.計算$x-2$項的分子時,$\dfrac{1}{x-2}$要為$0$,所以$x$要設為$2$,將$x=2$帶入$\dfrac{1}{x}$,得出$x-2$項分子為$\dfrac{1}{2}$</font>
:::
## <center><font color = #FFFFCC>重點觀念</font></center>
### <font color = #CCFFFF><center>指數函數次方相加減</center></font>
:::spoiler <font color=#FFCCCC>顯示觀念</font>
<font color=#CCCCFF>指數函數的<font color=#99CC99>次方相加</font>可以視為<font color=#99CC99>底數相乘</font></font>
<font color=#CCCCFF>例題:$e^{y^2-2x}$</font>
<font color=#FFCC99>可視為:$e^{y^2}*e^{-2x}$</font>
:::
### <font color = #CCFFFF><center>指數函數與對數函數的關係</center></font>
:::spoiler <font color=#FFCCCC>顯示觀念</font>
<font color=#99CC99>若指數函數的次方項為對數函數則可相消</font>
<font color=#CCCCFF>例題:$e^{-2ln2}$</font>
<font color=#FFCC99>可視為:$2^{-2}$</font>
:::
### <font color = #CCFFFF><center>對數函數基本規則</center></font>
:::spoiler <font color=#FFCCCC>顯示觀念</font>
<font color=#FFCC99>$ln(xy)=ln(x)+ln(y)$</font>
<font color=#FFCC99>$ln(\dfrac{x}{y})=ln(x)-ln(y)$</font>
<font color=#FFCC99>$ln(x^y)=yln(x)$</font>
:::
### <font color = #CCFFFF><center>對數函數消除方法</center></font>
:::spoiler <font color=#FFCCCC>顯示觀念</font>
<font color=#CCCCFF><font color=#99CC99>同取e為底數</font>則可與ln消除</font>
<font color=#CCCCFF>例題:$ln|x|=ln|1-cos\theta|+c$</font>
<font color=#FFCC99>Step1.將ln相關的移至同側$\dfrac{ln|x|}{ln|1-cos\theta|}=c$</font>
<font color=#FFCC99>Step2.等式左右同取e為底,$\dfrac{x}{1-cos\theta}=e^c$</font>
<font color=#FFCC99>Step3.因為e為常數所以也可寫作c,所以本題答案為$\dfrac{x}{1-cos\theta}=c$</font>
:::
### <font color = #CCFFFF><center>分子分母皆為三角函數的積分</center></font>
:::spoiler <font color=#FFCCCC>顯示觀念</font>
<font color=#CCCCFF>大多數情況使用<font color=#99CC99>變數變換</font>將分母換為u即可</font>
<font color=#CCCCFF>例題:$\int\dfrac{sin\theta}{1-cos\theta}d\theta$</font>
<font color=#FFCC99>Step1.將$1-cos\theta$設為$u$,$du=sin\theta d\theta$</font>
<font color=#FFCC99>Step2.計算$\int \dfrac{1}{u}du$,得出$ln|u|$</font>
<font color=#FFCC99>Step3.將$u$換回$(1-cos\theta)$,本題答案為$ln|1-cos\theta|$</font>
:::
<!-- 參考網址
https://hackmd.io/hackmd-dark-theme?both 黑色背景
https://hackmd.io/@CynthiaChuang/Basic-LaTeX-Commands#%E6%A8%99%E6%BA%96%E5%87%BD%E5%BC%8F%E7%AC%A6%E8%99%9F 數學符號語法
-->