--- title: Seminar --- # 1102 Seminar [TOC] ## 02/25 AI & chip > **EDA for AI** & **AI for EDA** ### NNeed: An **E**valuation and Design Space **E**xploration Engine for C**NN** Accelerators using Extensive **D**ataflow Analysis > [name=國立陽明交通大學電子工程學系 黃俊達教授] - Architecture Developmemt & Algorithm Refinememt for Intelligent Computing - EDA for AI #### Introduction - Biological NN -> Artificial Neural Network (ANN), MLPerception (MLP), Convolution NN, Recurrent NN - Accelerator - SoC : high performance, low power - two PEs: - **Fine-grained** architecture - high flex - simple - high regularity and capacity - **Coarse-grained** architecture - Few complex PEs - High utilization - Low power and small area - Systolic-Array based #### Motivation and Previous Work - Accelerator Design - **HUGE** design space - Need an ultra-eff egine to speed up the whole eval process - eval egine - practical hw - effi dataflow - rich ana - fast turnaround time (CNN model, config., constraints->ana egine->perform power area, hw arch.) - simulation vs. analysis - trade-off (speed / accuracy) ![](https://i.imgur.com/gtRc59p.jpg) ![](https://i.imgur.com/StuDcEW.jpg) #### Methology ![](https://i.imgur.com/uiwDlhH.jpg) - which one is constraint? weight or input? - **given constraint, then it could give you a best solution** #### Hardware Template - PE array - Global buffer - DRAM - Input Stationary ![](https://i.imgur.com/ZXuRWpj.jpg) - Weight Stationary - Output Stationary - Tiles and Tasks - task is a tile-level computation job - Task Sequence Example ![](https://i.imgur.com/nevl8XN.jpg) - External Data Manhrmrny - Traditional Dataflows - Dataflow and Data Reuse - IS, WS, OW is only be consider from PEs, so in general, there are $3!$ possible computation (I/W/O) ![](https://i.imgur.com/nO5YU2y.jpg) ![](https://i.imgur.com/LuFYQEy.jpg) ![](https://i.imgur.com/pFp0Ygk.jpg) ![](https://i.imgur.com/3oARXZh.jpg) - there are two kinds of tasks: data-bound, compute-bound - compute-bound: a better PE - data-bound: higher DRAM bandwidth #### Experiment Result ![](https://i.imgur.com/8YgRUp5.jpg) - depend on what you want - In general, owi/oiw perform better then others, but it is **in generel**, different results in different layers (data will be smaller after long-term training, but weights are going to be extremely large) ![](https://i.imgur.com/dRHlkhY.jpg) - performance curve is **NOT** symmetric, but at first we will give it a square shape (**NOT** always the best) ### When AI meet EDA (Electronic Design Automation) -- 以類比設計自動化為例 > [name=國立陽明交通大學電機系 劉建男教授兼系主任] - 國內電子設計翹楚!! (面不改色說著幹話🍵) - character: 一本正經說幹話, 應該是面癱 - VSLI/CAD (電腦輔助設計) - AI for EDA #### Why EDA is important in IC design - IC 設計最上游產業 (積體電路設計最重要的軟體) - 精密儀器跟EDA軟體的需求(中美貿易戰如何打壓hauwei) - CAD Research in VLSI Design - more productivity -> CAD (Computer-Aided Design) - exist everywhere #### What CS can do in EDA - synthesis = automation + optimization - optimize for performance - optimize for yield #### Machine Learning for everything - AI in EDA Tools: data analysis and management + ML + optimization #### **ML-assisted evolu algorithm for circuit sizing** ![](https://i.imgur.com/OTuB0y8.jpg) ![](https://i.imgur.com/uca1CLQ.jpg) ![](https://i.imgur.com/dz6eAHP.jpg) ![](https://i.imgur.com/CKt0Kil.jpg) ![](https://i.imgur.com/TWuZuWG.jpg) ![](https://i.imgur.com/eVOIzAK.jpg) ![](https://i.imgur.com/V9ixmS1.jpg) - ML is used for predicting the design (after evolutionary operation) ![](https://i.imgur.com/MQakCKe.jpg) - DNN is better than SVM (too simple) #### conclusion - ML + para = speed up at least 20 times ![](https://i.imgur.com/8djK3OB.jpg) ![](https://i.imgur.com/f0XJTmI.jpg) ![](https://i.imgur.com/DkhscTu.jpg) ![](https://i.imgur.com/fYmoOnO.jpg) - EA + DNN + Force Model(their design) -> yield 97.5% --- ## 03/04 ZYXEL 合勤科技產品事業、人資經理 ### 產業 > 產品事業管理部 葉宗昀(Gavin Yeh) 資深經理 - What are they doing ? - ADSL、電信業、5G、資安 - 防火牆、網路設計代工 - 軍事武器訊號技術(ex. 雷達) - R&D 人才培育 - 疫情下的市場趨勢 - 網路已變必需品 - IoT Connected devices 依賴度提高 - 利用 Internet 提升商品附加價值 - Opportunity - E-Commerce - Digital Payment - Digital Media Spend - Social Media - Threatens - Cyberattacks - Ransomware Extortion - Fake News/ Information - Fraud > 危機就是轉機 - Security - Telco 電信 - Fiber 成本下降、收益提升(網速越快收費越高) - Average Billing per user Increasing - Operating Expense Decreasing - Fixed-Mobile Convergence Strategy - 綑綁消費 :::success 找國內外上市公司的財報,了解公司分析的未來趨勢及發展方向 (順便看股票好不好😄,以便未來投資 ::: ![](https://i.imgur.com/0ZZsnIB.png) - 軟體開發需求 - 知識財: 手機的作業系統是價值所在 - 比起會某一種程式語言,注重基本邏輯能力、學習能力 - 主要開發 **Middle Ware** base on Linux kernel - Solution 調整 - 瑪斯克的Backhaul ### 人資 > 全球人資暨行政處 黃惠玲(Feeling Huang) 資深經理 - 賣服務 --- ## 03/11 Poly 數位學習教育方案(產品發表) > 賴巍政經理 - Polycom & Plantronic - NASA 指定耳機 - 服務需求,問題解決 - 遠距教學 - 軟體跨平台 - 鏡頭追蹤: 講者、移動、多人。 - 有多種教學模式,因應故種教學方式 - 2秒是人體舒適切換的速度 - 收音: 高清、定位人聲、防ECHO、降低環境噪音 - Speaker tracking 聲波(束波)定位 - 利用多個麥克風所收到聲音的時間差來計算角度 - 使用至少三個麥克風矩陣,做數波定位 - 噪音屏蔽AI、虛擬隔音牆。來屏蔽外界的聲音,只收人聲 - 根據頻率來判斷人聲,屏蔽其他噪音 --- ## 03/18 On the Overlapping Community Detection ProblemFile > 彭勝龍 > 台北商業大學創意科技與產業設計系主任 ### Introduction - Social Networks - Node: Individual, Organization - Edge: Relation, Interaction - Communities - A group of vertices having a high density of edges, and a lower density of edges between different groups. - Clusters in PPI Networks - PPI: Protein-Protein Interaction - a cluster can form a gene team or be involved in a pathway > cluster: 群聚效果 - Community Detection - aims to discover a community structure - Community Structures(**C**) - Disjoint - Overlapping(close to the truth) - Quality Functions - Q fuction: dishoint - ![](https://i.imgur.com/9vbvuZ7.jpg) - EQ funcition: overlapping - ![](https://i.imgur.com/b2ERql8.jpg) > 兩 **C** 必較 Q value: 越高越好 - 用來分析並比較分群演算法優劣 ### A Neighbor Melding Algorithm - Neighbor Fusion for two **C** - node 具有高影響力者可加入該群 **C** > deg(u) >= max{E,E+1} > degree: node 相連數量 - 重複融合直至 Quality 沒有改善 - ![](https://i.imgur.com/ojowP7Y.jpg) ### Hierarchical Merging Algorithms - It shows an evolution of communities in a social network. - It can be treated as a trend of community integration. - Binary Tree - Spilt(up to down) or Merge(down to up) - A General Bottom-Up Approach - ![](https://i.imgur.com/b8Ezxky.jpg) #### EAGLE Algorithm - Maximal Cliques - Find out all basic communities - Compute similarity #### Our Algorithm - Blocks of close neighborhoods - a maximal biconnected component of a graph ### Coucluting Result - Are th quality function good enough? - A partition without any cut get Q = 0.083 - How to measure an evolution tree for predicting a trend of community integration? ---- ## 03/25 產業AI化 - 台灣人工智慧學校 > [台灣人工智慧學校 官網](https://aiacademy.tw/) > 蔡明順 校務長 - Outside-in 從需求的角度看資工專業的潛力 - 智慧路燈(含wifi等功能) - ![](https://i.imgur.com/wVJ48pE.png) - 人工智慧產業化 - 科技產業是現代最重要的公司 - 產業轉型(石油 --> 金融 --> 軟硬體科技) - 軟體吃掉硬體,AI吃掉軟體 - AI是主流,其他像是元宇宙之類的,只是AI的附屬 - AI已被各國當成國家戰略 - 先進製造業、量子資訊科學、5G/B5G、AI是US政府投資的四逛關鍵技術 - ![](https://i.imgur.com/dwKllmd.jpg) - 數據、場景、演算法、半導體晶片與??是AI重要的關鍵 - 現代進入Software2.0 - ![](https://i.imgur.com/hAD4MnE.jpg) - Internet拉平了「資訊量」, AI拉平了「智能量」的差距 - AI產業化(AI+) vs. 產業AI化(+AI) ### 產業應用 - 智慧製造瑕疵檢測 - Edge AI - AOI (Automated optical inspection) - 智慧醫療 Prognostic and Health Management - 避免誤診 - 仍在初期 - 智慧交通 - 智慧駕駛 - ![](https://i.imgur.com/L6Qmj4K.png) - 智慧金融 - AI發展程度,現在大概發展到level2、3 ![](https://i.imgur.com/8n2m594.jpg) - 資訊安全未來需求很大 - [MLOps](https://en.wikipedia.org/wiki/MLOps) ### Question - 您剛剛特別以德系和美系來區分外商公司,請問他們有甚麼不一樣的地方? - Edge AI是拿來加速的嗎? - Data Enginner vs Data Scientist - 產業 AI 諮詢? 產業有需求 我們握有技術但不了解 請問現在有什麼平台協助二方面的協調嗎 --- ## 04/01 YOLOv4 及其產業應用 > [name=中央研究院 廖弘源 特聘研究員/所長] > 人工智慧學校副校長 > IEEE fellow ### 人工智慧在音樂上的應用 - Using AI automatically sequence the song - to complete music vedio e.g. 演唱會會有 serverl fans record and official version,用 AI turn them into a complete vedio #### Issues needed to be addressed - 各個影片觀看順序 - visual storytelling - The diffrent of smartphone visual/audio quality - language of flim #### Potential Issue - How to present the emotion, ideas, and art of a music director into a concert video mashup process? - 符合音樂導演要求和經驗 #### Solution - Visual - Shot Classification based on Error-Weighted Deep Cross-Correlation Model - Define the six camera shots by distance - basically a pattern matching problem + correlation - EW-Deep-CCM 17% error remain, sepcific in the simple shot (cause too many shot changes) - Input: 1000+ category of objects, video stream from adele concert - Process: Fuse the two using a Deep Neural network - Ouput: 8 categories of stage shot - Conditional Random ield-based (CRF)Apporach1. - + CRF -> 90% :+1: ### Seethevoice: Learning from Music to visual storytelling of shots - 用音樂驅動並直接選取適當的視訊片段 (Use AI pick a shot by music audio) ### Problem - Must achieve real time response, which shot type to adopt ### System Framework - KD - Train a teacher net and a student net, teacher net - Knowledge Distillation - He who teaches, learns - The student info turn back to teach teacher net, then teacher distill again till the model stable. ### Yolov4 - The world’s most **accurate and speedy** object detector during (Sept. 28 – Dec. 15, 2020) - Smart City Traffic Flow Solutions - Edging computing but use limited device ( TX2 ) - final goal: reinforcement learning -> 控制交通號誌 - object detection is a must (and Yolov4 is a detection model) - traffic detection 貢獻之一: 轉向bounding box (YOLO V4 default is 正向) ### Questions - Q1. What is the difference between the purpose for two prediction (Dense prediction, Sparse prediction) - Q2. Occlusion problem - Multiple Object Tracking ## 04/15 Clustered-based Multi-pin Fine Pitch Ball Grid Array Substrate Routing Optimization > 劉一宇 台科大資工系 副教授 - 晶片設計 - 硬體描述語言 - EDA - FBGA (Fine-pitch Ball Grid Array) - Substrate: 晶片載板 - Routing: 繞線,避免線之間接觸導致短路。 - via: 在不同層電路間的樓梯 ### Introduction - Fine-pitch: 距離約等於 8~10 根頭髮(外面那些銀白色球體的間距) ![](https://i.imgur.com/CQ3qiVr.png) - Structure ![](https://i.imgur.com/soQST8z.png) ![](https://i.imgur.com/z6O1Vst.jpg) - Flip-chip - 繞線技術越精細、成本越高 - Via 打孔受限於成本,size 為線體的 4~6 倍 - finger 的部分採用 any angle - 手機製造 - 晶片: 10W - 電壓: 1V - 電流: 10A ### ILP(Interger Linear Programming) - 任何要連接的兩點(起點finger --> 終點球體) - keep-out zone(for finger) ``` in --> (node) --> out 1 1 ``` - Constraints - in + out <= 2 - out - in - 1: 起點 - -1: 終點 - 0: 過路的或是雜魚 - Relaxation ### Multi-pin Net Issue - 前面討論的都是 two-pin,兩個點之間連接 - Algorithm 1. Design 2. Grouping 3. Spanning Tree(Delaunay Triangulation) 4. Connection - Intra: finger to finger, bump ball to bump ball - Inter: finger to bump ball > 遠距離就交給 ILP 處理 5. Layout --- ## 04/15 Metaverse 元宇宙 > 佐臻 company > AR Glasses > New Brain-Computing Interface ## 04/29 我在「幸福企業」- 10年來學到的事情 > 王鐘逸 研究員 p.32 學長在進入業界後,有沒有遺憾當初在學期間沒有去做到的事情?或是如今學長看著底下帶的新人,有覺得我們需要多去努力的部分? - 英文能力 - 快速抓到重點 ps. 不過他也覺得溝通很重要 Q: 那請問學長會用甚麼方式來練習溝通? 除了平常報告之外。 ## 05/20 量子霸權與物聯網時代之密碼策略 > 許宏誌 助理教授 > 量子(電腦)簡介:與傳統bit不同,一個位元可以同時存在0 or 1,測量時,0 & 1會依據他的機率出現。 (我這樣講不知道你聽不聽的懂) > 博士論文: High-capacity and Efficient-Embedding Steganography ### Threats ![](https://i.imgur.com/VkItTKE.png) #### Quantum Supremacy - **Shor's Algorithm**: 質因數分解演算法 - Threats to public-key crypto-systems - **Input**: an odd composite number with n bits - **Output**: a non-trival factorization of **Input** with some probability. - Quantum parallelism(量子位元之間的糾纏) - Reduce to order-finding problem - 用在 **RSA** - Time complexity: O(n^3logn) ![](https://i.imgur.com/cDfACiG.png) - **Grover's Algorithm**: 無序資料庫搜索演算法 - Security-level shrinkage of private-key crypto-systems - Search database with probabilities. - O(N) -> O(sqrt(N)) - The security level of AES128 will shrink from 2^256 to 2^128. - ![](https://i.imgur.com/gT3SuLh.png) #### Internet of Things (IOT) - Side-Channel Attack for private-key crypto-systems - **SCA 旁道攻擊** - ![](https://i.imgur.com/du5SlED.png) - 幫忙縮短時間 ### Solutions - For quantum computing - public-key crpto-systems - Post quantum cryptography - private-key crpto-systems - Extending the key length of AES - For side-channel attack in IoT - Customized AES - Signal masking - Pipeline ![](https://i.imgur.com/XElcGDh.png) > Candidate: 需支援七種加解密方式 #### NP-hard - ex. 離散對數問題 - **Non-deterministic Polynomial** - [什麼是P, NP, NP-Complete, NP-Hard問題](https://www.ycc.idv.tw/algorithm-complexity-theory.html) #### Lattice - Shortest Vector Problem - Given basis of a vector spcace V and ...>< - ![](https://i.imgur.com/yfNbzgD.png) #### Recall RSA ![](https://i.imgur.com/ev965ho.png) #### [NTRUEncryption](https://en.wikipedia.org/wiki/NTRUEncrypt) ![](https://i.imgur.com/Pws6aos.png) ![](https://i.imgur.com/nFNwN29.png) ![](https://i.imgur.com/NX71jSm.png) ![](https://i.imgur.com/87ZHzGX.png) ![](https://i.imgur.com/vTbQdAk.png) ![](https://i.imgur.com/3uaMO9h.png) ![](https://i.imgur.com/5fn6Ai9.png) ![](https://i.imgur.com/HNgxOlk.png) ![](https://i.imgur.com/IRzZIC1.png) #### [McEliece](https://en.wikipedia.org/wiki/McEliece_cryptosystem) ![](https://i.imgur.com/6S1jddX.png) ### Conclusion ![](https://i.imgur.com/RBXl5dg.png) ### QA - 國內商機(業界) - 軍方需求 **Post-quantum cryptography(PQC)** - 台灣現在還在開發量子電腦