--- tags: real experiments --- # Female control experiment 20Feb20 0. 1500 start time. 1. Cage sampling every other baseline, 120 sec duration. 2. 14 ml water at start. 3. Animals in all cages 4. plan to run until Monday AM. Cage 0 - 20.1g - 14F Cage 1 - 22.6g - 75F Cage 2 - 21.1g - 27F Cage 3 - 23.1g - 51F Cage 4 - 21.8g - 97F Cage 5 - 17.6 - 1006F Cage 6 - 15.4g - 2F water refilled 24Feb20 at 1400. ## Water ``` library(tidyverse) library(lubridate) library(readr) cageweight0 <- 20.1 cageweight1 <- 22.6 cageweight2 <- 31.1 cageweight3 <- 23.1 cageweight4 <- 21.8 cageweight5 <- 17.6 cageweight6 <- 15.4 animalID0 <- "14F" animalID1 <- "75F" animalID2 <- "27F" animalID3 <- "51F" animalID4 <- "97F" animalID5 <- "1006" animalID6 <- "2F" datafile <- "~/Dropbox/Cactus_Mouse_Physiology/data/20Feb20/feb20_4.csv" feb20 <- read_csv(datafile, col_types = cols(Animal = col_double(), StartDate = col_date(format = "%m/%d/%Y"), deltaCO2 = col_double(), deltaH2O = col_double(), H2Oml = col_double(), VCO2 = col_double(), StartTime = col_time(format = "%H:%M:%S"))) '%!in%' <- function(x,y)!('%in%'(x,y)) feb20 <- feb20 %>% mutate(EE = 0.06*(3.941*VO2 + 1.106*VCO2)) %>% mutate(RQ = VCO2/VO2) %>% mutate(animal = round(Animal, digits=0)) %>% mutate(Animal = NULL) %>% unite("DateTime", StartDate:StartTime, remove = FALSE, sep = " ") %>% mutate(weight = ifelse(animal == 0, cageweight0, ifelse(animal == 1, cageweight1, ifelse(animal == 2, cageweight2, ifelse(animal == 3, cageweight3, ifelse(animal == 4, cageweight4, ifelse(animal == 5, cageweight5, ifelse(animal == 6, cageweight6, NA)))))))) %>% mutate(Animal_ID = ifelse(animal == 7, 'baseline', ifelse(animal == 0, animalID0, ifelse(animal == 1, animalID1, ifelse(animal == 2, animalID2, ifelse(animal == 3, animalID3, ifelse(animal == 4, animalID4, ifelse(animal == 5, animalID5, ifelse(animal == 6, animalID6, NA))))))))) %>% mutate(H2Omg_edit = ifelse(hour(StartTime) == 8, H2Omg - 0.001, ifelse(hour(StartTime) == 7, H2Omg - 0.001, ifelse(hour(StartTime) == 9, H2Omg - 0.002, ifelse(hour(StartTime) == 10, H2Omg - 0.002, ifelse(hour(StartTime) == 19, H2Omg + 0.001, ifelse(hour(StartTime) == 20, H2Omg + 0.001, ifelse(hour(StartTime) == 21, H2Omg + 0.001, ifelse(hour(StartTime) == 22, H2Omg + 0.001, ifelse(hour(StartTime) %!in% c(7,8,9,10,20,21,22,19), H2Omg, NA)))))))))) %>% mutate_at("H2Omg_edit", as.numeric) %>% mutate(corEE = EE/weight) %>% mutate(sex = "Female") metric <- "corEE" target <- c(0,1,2,3,4,5,6) cages20feb <- feb20 %>% filter(animal %in% target) measurement <- cages20feb %>% select(metric) df<-as.data.frame(measurement[[metric]]) legend_title <- "Animal ID" p <- ggplot(data = cages20feb,aes(x=as.POSIXct(StartTime),y=measurement[[metric]])) p <- p + geom_point(aes(group=as.factor(Animal_ID), color=as.factor(Animal_ID)), size = 3) p <- p + theme_grey(base_size = 15) p <- p + geom_smooth(data=df$V1, method='loess', span=.3) p <- p + labs(x = "", y = metric) p <- p + scale_color_brewer(legend_title, palette="Paired") p <- p + scale_x_datetime(date_breaks = "2 hours", date_labels = "%H:%M") #p <- p + geom_hline(yintercept = 0.8907387) p ``` #### This is the plot of the H2O data without any correction for 8PM/AM bias.. ![full water data](https://i.imgur.com/9RGc6M1.png) #### Maybe we should exclude these times?? We still see the basic pattern ![](https://i.imgur.com/qmWKtFK.png) #### Maybe we should correct for these biases mathmatically? ``` metric <- "H2Omg_edit" target <- c(0,1,2,3,4,5,6) cages <- feb20_4 %>% filter(animal %in% target) #cages <- with( cages ,cages[ hour( StartTime ) >= 0 & hour( StartTime ) < 4 , ] ) measurement <- cages %>% select(metric) df<-as.data.frame(measurement[[metric]]) legend_title <- "Cage Number" p <- ggplot(data = cages,aes(x=as.POSIXct(StartTime),y=measurement[[metric]])) p <- p + geom_point(aes(group=as.factor(animal), color=as.factor(animal)), size = 3) p <- p + theme_grey(base_size = 15) p <- p + geom_smooth(data=df$V1, method='loess', span=.9) p <- p + labs(x = "", y = metric) p <- p + scale_color_brewer(legend_title, palette="Paired") p <- p + scale_x_datetime(date_breaks = "2 hours", date_labels = "%H:%M") #p <- p + geom_hline(yintercept = 0.8907387) p ``` ![](https://i.imgur.com/ElQXuG3.png) ``` library(tidyverse) library(lubridate) library(readr) cageweight0 <- 20.1 cageweight1 <- 22.6 cageweight2 <- 21.1 cageweight3 <- 23.1 cageweight4 <- 21.8 cageweight5 <- 17.6 cageweight6 <- 15.4 animalID0 <- "14F" animalID1 <- "75F" animalID2 <- "27F" animalID3 <- "51F" animalID4 <- "97F" animalID5 <- "1006F" animalID6 <- "2F" datafile <- "/Volumes/4TB_1/Dropbox/Cactus_Mouse_Physiology/data/20Feb20/feb20.csv" feb20 <- read_csv(datafile, col_types = cols(Animal = col_double(), StartDate = col_date(format = "%m/%d/%Y"), deltaCO2 = col_double(), deltaH2O = col_double(), H2Oml = col_double(), VCO2 = col_double(), StartTime = col_time(format = "%H:%M:%S"))) '%!in%' <- function(x,y)!('%in%'(x,y)) feb20 <- feb20 %>% mutate(EE = 0.06*(3.941*VO2 + 1.106*VCO2)) %>% mutate(RQ = VCO2/VO2) %>% mutate(animal = round(Animal, digits=0)) %>% mutate(Animal = NULL) %>% unite("DateTime", StartDate:StartTime, remove = FALSE, sep = " ") %>% mutate(weight = ifelse(animal == 0, cageweight0, ifelse(animal == 1, cageweight1, ifelse(animal == 2, cageweight2, ifelse(animal == 3, cageweight3, ifelse(animal == 4, cageweight4, ifelse(animal == 5, cageweight5, ifelse(animal == 6, cageweight6, NA)))))))) %>% mutate(Animal_ID = ifelse(animal == 7, 'baseline', ifelse(animal == 0, animalID0, ifelse(animal == 1, animalID1, ifelse(animal == 2, animalID2, ifelse(animal == 3, animalID3, ifelse(animal == 4, animalID4, ifelse(animal == 5, animalID5, ifelse(animal == 6, animalID6, NA))))))))) %>% mutate(H2Omg_edit = ifelse(hour(StartTime) == 8, H2Omg - 0.001, ifelse(hour(StartTime) == 7, H2Omg - 0.001, ifelse(hour(StartTime) == 9, H2Omg - 0.001, ifelse(hour(StartTime) == 10, H2Omg - 0.001, ifelse(hour(StartTime) == 19, H2Omg + 0.001, ifelse(hour(StartTime) == 20, H2Omg + 0.001, ifelse(hour(StartTime) == 21, H2Omg + 0.001, ifelse(hour(StartTime) == 22, H2Omg + 0.001, ifelse(hour(StartTime) %!in% c(7,8,9,10,20,21,22,19), H2Omg, NA)))))))))) %>% mutate_at("H2Omg_edit", as.numeric) %>% mutate(corEE = EE/weight) metric <- "corEE" target <- c(0,1,2,3,4,5,6) cages20feb <- feb20 %>% filter(animal %in% target) #cages <- with( cages20feb ,cages20feb[ hour( StartTime ) >= 0 & hour( StartTime ) < 4 , ] ) measurement <- cages20feb %>% select(metric) df<-as.data.frame(measurement[[metric]]) legend_title <- "Animal ID" p <- ggplot(data = cages20feb,aes(x=as.POSIXct(StartTime),y=measurement[[metric]])) p <- p + geom_point(aes(group=as.factor(Animal_ID), color=as.factor(Animal_ID)), size = 3) p <- p + theme_grey(base_size = 15) p <- p + geom_smooth(data=df$V1, method='loess', span=.9) p <- p + labs(x = "", y = metric) p <- p + scale_color_brewer(legend_title, palette="Paired") p <- p + scale_x_datetime(date_breaks = "2 hours", date_labels = "%H:%M") #p <- p + geom_hline(yintercept = 0.8907387) p ``` ![](https://i.imgur.com/g9MSrkn.png) ![](https://i.imgur.com/JUtytWR.png) ![](https://i.imgur.com/DPq6lMY.png) ![](https://i.imgur.com/yDFZUoV.png) ![](https://i.imgur.com/dSyzlLN.png)