# R script for plotting with bias correction ``` library(tidyverse) library(lubridate) library(readr) datafile <- "/Volumes/4TB_1/Dropbox/Cactus_Mouse_Physiology/data/20Feb20/feb20_4.csv" feb20_4 <- read_csv(datafile, col_types = cols(Animal = col_double(), StartDate = col_date(format = "%m/%d/%Y"), deltaCO2 = col_double(), deltaH2O = col_double(), H2Oml = col_double(), VCO2 = col_double(), StartTime = col_time(format = "%H:%M:%S"))) '%!in%' <- function(x,y)!('%in%'(x,y)) feb20_4 <- feb20_4 %>% mutate(EE = 0.06*(3.941*VO2 + 1.106*VCO2)) %>% mutate(RQ = VCO2/VO2) %>% mutate(H2Omg_edit8 = ifelse(hour(StartTime) == 8, H2Omg - 0.09536454, NA)) %>% mutate(H2Omg_edit7 = ifelse(hour(StartTime) == 7, H2Omg - 0.06536454, NA)) %>% mutate(H2Omg_edit9 = ifelse(hour(StartTime) == 9, H2Omg - 0.02219424, NA)) %>% mutate(H2Omg_edit10 = ifelse(hour(StartTime) == 10, H2Omg - 0.03273413, NA)) %>% mutate(H2Omg_edit19 = ifelse(hour(StartTime) == 19, H2Omg + 0.002130708, NA)) %>% mutate(H2Omg_edit20 = ifelse(hour(StartTime) == 20, H2Omg + 0.01667473, NA)) %>% mutate(H2Omg_edit21 = ifelse(hour(StartTime) == 21, H2Omg + 0.02703453, NA)) %>% mutate(H2Omg_edit22 = ifelse(hour(StartTime) == 22, H2Omg + 0.01412046, NA)) %>% mutate(H2Omg_edits = ifelse(hour(StartTime) %!in% c(7,8,9,10,20,21,22,19), H2Omg, NA)) %>% replace_na(list(H2Omg_edit19 = "", H2Omg_edit20 = "", H2Omg_edit21 = "", H2Omg_edit22 = "", H2Omg_edit10 = "", H2Omg_edit7 = "", H2Omg_edit8 = "",H2Omg_edit9 = "",H2Omg_edits = "")) %>% mutate(animal = round(Animal, digits=0)) %>% unite("DateTime", StartDate:StartTime, remove = FALSE, sep = " ") %>% unite(H2Omg_edit, c(H2Omg_edit19, H2Omg_edit20, H2Omg_edit21, H2Omg_edit22, H2Omg_edits, H2Omg_edit10, H2Omg_edit7, H2Omg_edit8, H2Omg_edit9), sep = "", remove = TRUE) %>% mutate_at("H2Omg_edit", as.numeric) %>% mutate(Animal = NULL) metric <- "H2Omg_edit" target <- c(0,1,2,3,4,5,6) cages <- feb20_4 %>% filter(animal %in% target) #cages <- with( cages ,cages[ hour( StartTime ) >= 0 & hour( StartTime ) < 4 , ] ) measurement <- cages %>% select(metric) df<-as.data.frame(measurement[[metric]]) legend_title <- "Cage Number" p <- ggplot(data = cages,aes(x=as.POSIXct(StartTime),y=measurement[[metric]])) p <- p + geom_point(aes(group=as.factor(animal), color=as.factor(animal)), size = 3) p <- p + theme_grey(base_size = 15) p <- p + geom_smooth(data=df$V1, method='loess', span=.9) p <- p + labs(x = "", y = metric) p <- p + scale_color_brewer(legend_title, palette="Paired") p <- p + scale_x_datetime(date_breaks = "2 hours", date_labels = "%H:%M") #p <- p + geom_hline(yintercept = 0.8907387) p ``` ![](https://i.imgur.com/erf6amt.png)