---
## Question 3: Define two forms of the limit definition of a derivative.
---
#### Form 1:
## $$\lim_{h\to 0}f(x)=\frac{f(x+h)-f(x)}{x+h}$$
---
### Using the equation: $$x^2 +1$$
#### $$\lim_{h\to 0}f(x)=\frac{((x+h)^2 +1)-(x^2 +1)}{h}$$
---
#### This next step we simplify the equation by factoring everything out.
### $$\lim_{h\to 0}f(x)=\frac{x^2 +2xh+h^2 -x^2 +1}{h}$$
#### Next we canceled out like terms in the equation.
### $$\lim_{h\to 0}f(x)=\frac{2xh+h^2 }{h}$$
#### Then we can factor out an h since it is a like term.
#### $$\lim_{h\to 0}f(x)=\frac{h(2x+h)}{h}$$
---
#### H is then canceled since it has an h on the numerator and denominator, leaving us with:
### $$\lim_{h\to 0}f(x)=2x+h$$
### Then h gets set to 0 leaving us with:
### $$\lim_{h\to 0}f(x)=2x$$
---
## Form 2:
### Definition:$$\lim_{x\to a}=\frac{f(x)-f(a)}{x-a}$$
### Using the equation $$x^2 +1$$
## $$\lim_{x\to a}=\frac{(x^2 +1)-(a^2 +1)}{x-a}$$
---
#### We have to apply L'Hospital's rule since the expression is undefined:
### $$\lim_{x\to a}=\frac{\frac{d}{dx}(x^2 +1)-(a^2 +1)}{\frac{d}{dx}x-a}$$
### Taking the derivative of the numerator and denominator:
#### $$\lim_{x\to a}=\frac{2x+0}{1+0}=2x$$
---
{"metaMigratedAt":"2023-06-15T12:14:50.302Z","metaMigratedFrom":"Content","title":"Untitled","breaks":true,"contributors":"[{\"id\":\"3cfd0168-cd81-432b-ad54-3acf7237ec1c\",\"add\":1792,\"del\":582}]"}