# 8.5-Method of Partial Fractions-Advanced
## Anna Smith
### 11/12/2020
---
Question 4:
By means of the partial fraction decomposition method, compute the integral:
$\int\frac{x^3+x+1}{(x^2+1)(x^2+x+1)}dx$
---
$\int\frac{x^3+x+1}{(x^2+1)(x^2+x+1)}dx=\frac{Ax+B}{(x^2+1)}+\frac{Cx+D}{x^2+x+1}$
$x^3+x+1=(Ax+B)(x^2+x+1)+(Cx+D)(x^2+1)$
$x^3+x+1=$
$x^3A+x^3C+x^2A+x^2B+x^2D+xA+xB+xC+B+D$
Add like terms:
---
$x^3+x+1=$
$x^3(A+C)+x^2(A+B+D)+x(A+B+C)+B+D$
Set $x=0$
$1=B+D\rightarrow D=1-B$
$D=1$
Set $x=1$
$3=3(A+B)+2(C+D)$
$3=3A+3B+2C+2-2B\rightarrow 1=3A+B+2C$
$C=2$
---
Set $x=-1$
$-1=B-A+2(0-C)$
$-1=B-A+2-2B-1+3A+B$
$-2=2A \rightarrow A=-1$
Set $x=2$
$11=7(2A+B)+5(2C+D)\rightarrow 11=-14+7B+5+15$
$\rightarrow -5B+5-5B\rightarrow 0=-3B$
$\rightarrow B=0$
---
$\int\frac{x^3+x+1}{(x^2+1)(x^2+x+1)}dx=\frac{-1x+0}{(x^2+1)}+\frac{2x+1}{(x^2+x+1)}$
$=\frac{-x}{(x^2+1)}+\frac{2x+1}{(x^2+x+1)}$
$=\int\frac{-x}{(x^2+1)}+\frac{2x+1}{(x^2+x+1)}$
---
Take the antiderivative:
$u=x^2+1,du=2xdx,\frac{-1}{2}du=-xdx$
$\frac{-1}{2}\int\frac{1}{u}\rightarrow \frac{-1}{2}ln(u)=\frac{-1}{2}ln(x^2+1)$
$u=x^2+x+1,du=2x+1dx$
$\rightarrow \int\frac{1}{u} \rightarrow ln(u)=ln(x^2+x+1)$
Final answer...
$\frac{-1}{2}ln(x^2+1)+ln(x^2+x+1)$
{"breaks":true,"metaMigratedAt":"2023-06-15T15:41:43.591Z","metaMigratedFrom":"Content","title":"8.5-Method of Partial Fractions-Advanced","contributors":"[{\"id\":\"3cfd0168-cd81-432b-ad54-3acf7237ec1c\",\"add\":1324,\"del\":85}]"}