Math 181 Miniproject 11: Riemann Sums.md --- --- tags: MATH 181 --- Math 181 Miniproject 11: Riemann Sums === **Overview:** This miniproject focuses on the use of $\sum$-notation to estimate the area under a curve. Students will use Desmos to set up and evaluate Riemann sums to get the area under a curve that is not amenable to the Fundamental Theorem of Calculus. **Prerequisites:** Section 4.3 of *Active Calculus.* --- :::info For this miniproject you will be estimating the area under the curve $$ f\left(x\right)=\left|\frac{10x}{x^2+1}\sin \left(x\right)\right|+\frac{4}{x^2+1} $$ from $x=1$ to $x=10$. ![](https://i.imgur.com/h56UdIm.png) Before you start, enter the function $f(x)$ into Desmos so that you can refer to it later. (1) Evaluate $R_3$ using Desmos. ::: (1) ![](https://i.imgur.com/p9qq1RO.png) :::info (2) Evaluate $M_3$ using Desmos. ::: (2) ![](https://i.imgur.com/aBabTKD.png) ![](https://i.imgur.com/Z9hOkMK.png) :::info (3) Evaluate $L_9$ using Desmos. ::: (3) ![](https://i.imgur.com/p2YXkyZ.png) :::info (4) Evaluate $R_{100}$ using Desmos. You will probably want to use the $\sum$-notation capabilities of Desmos. ::: (4) ![](https://i.imgur.com/ttlc5Eh.png) :::info (5) Evaluate $R_{1000}$ using Desmos. ::: (5) ![](https://i.imgur.com/p9jgEQr.png) :::info (6) Write out an expression using a limit that will give the exact area under the curve $y=f(x)$ from $x=1$ to $x=10$. ::: (6) ![](https://i.imgur.com/JxzVnlC.png) --- To submit this assignment click on the Publish button ![Publish button icon](https://i.imgur.com/Qk7vi9V.png). Then copy the url of the final document and submit it in Canvas.