Math 181 Miniproject 3: Texting Lesson.md --- My lesson Topic === <style> body { background-color: #eeeeee; } h1 { color: maroon; margin-left: 40px; } .gray { margin-left: 50px ; margin-right: 29%; font-weight: 500; color: #000000; background-color: #cccccc; border-color: #aaaaaa; } .blue { display: inline-block; margin-left: 29% ; margin-right: 0%; width: -webkit-calc(70% - 50px); width: -moz-calc(70% - 50px); width: calc(70% - 50px); font-weight: 500; color: #fff; border-color: #336699; background-color: #337799; } .left { content:url("https://i.imgur.com/rUsxo7j.png"); width:50px; border-radius: 50%; float:left; } .right{ content:url("https://i.imgur.com/5ALcyl3.png"); width:50px; border-radius: 50%; display: inline-block; vertical-align:top; } </style> <div id="container" style=" padding: 6px; color: #fff; border-color: #336699; background-color: #337799; display: flex; justify-content: space-between; margin-bottom:3px;"> <div> <i class="fa fa-envelope fa-2x"></i> </div> <div> <i class="fa fa-camera fa-2x"></i> </div> <div> <i class="fa fa-comments fa-2x"></i> </div> <div> <i class="fa fa-address-card fa-2x" aria-hidden="true"></i> </div> <div> <i class="fa fa-phone fa-2x" aria-hidden="true"></i> </div> <div> <i class="fa fa-list-ul fa-2x" aria-hidden="true"></i> </div> <div> <i class="fa fa-user-plus fa-2x" aria-hidden="true"></i> </div> </div> <div><img class="left"/><div class="alert gray"> So... what exactly is this assignment? It looks tricky. </div></div> <div><div class="alert blue"> Which one? </div><img class="right"/></div> <div><img class="left"/><div class="alert gray"> Number 3. The one that says, "(a) Use the formula $f'(x)=\frac{1}{2\sqrt{x}}$ to find the linear approximation of $f(x)=\sqrt[2]{x}$ at $x=49$. (b) Use the linear approximation to estimate the value of $f(50)$." </div></div> <div><div class="alert blue"> Is that the one that helps us estimate the value of a number on the function with the help of a tangent line? </div><img class="right"/></div> <div><img class="left"/><div class="alert gray"> Yeah, that one! I'm having trouble understanding it. HELP ME PLZ! </div></div> <div><div class="alert blue"> Okay, okay, I'll help you. So basically all we are trying to find is an equation that we can use to estimate the value of $f(x)$ at a certain point. Especially when the numbers get more and more specific and decimals become a little too much to handle. </div><img class="right"/></div> <div><div class="alert blue"> In this case we will be using the equation $L(X)=f(a)+f'(a)(x-a)$. L(x) is simply the value we are trying to find, while x is the value we are plugging in. f(a) is our original equation $f(x)=\sqrt[2]{x}$. While f'(a) is just the derivative of f(a) or $f'(x)=\frac{1}{2\sqrt{x}}$. </div><img class="right"/></div> <div><img class="left"/><div class="alert gray"> Alright, that seems simple enough. Now how do we find each of those values? </div></div> <div><div class="alert blue"> Since we can easily find the value of $f(49)$ we can use that number as a reference or as the a in the equation. In other words we just find the values of $f(49)$and $f'(49)$ and plug those in to the equation $L(x)$. A little hint tho, it might be easier to plug in the whole equations into those values. </div><img class="right"/></div> <div><img class="left"/><div class="alert gray"> Okay, give me a minute to try it out. </div></div> <div><img class="left"/><div class="alert gray"> So like this? $L(x)=f(49)+f'(49)(x-49)$ $L(x)=\sqrt[2]{49}+\frac{1}{2\sqrt{49}}(x-49)$ $L(x)=7+\frac{1}{14}(x-49)$ This is as far as I got. </div></div> <div><div class="alert blue"> That's perfect! Now all you need to do is plug in the value we are trying to find, in this case $x=50$. So plug in $50$ for every $x$ in the equation. </div><img class="right"/></div> <div><img class="left"/><div class="alert gray"> Alright! $L(x)=f(49)+f'(49)(x-49)$ $L(x)=\sqrt[2]{49}+\frac{1}{2\sqrt{49}}(x-49)$ $L(x)=7+\frac{1}{14}(x-49)$ So I continue it like this, right? $L(50)=7+\frac{1}{14}(50-49)$ $L(50)=7+\frac{1}{14}(1)$ $L(50)=\frac{98}{14}+\frac{1}{14}$ $L(50)=\frac{99}{14}$ or $L(50)=7.071428571$ </div></div> <div><div class="alert blue"> Yes, exactly! Now another hint, in order to check your answer and to see if it is at least somewhat accurate to the actual number just use a calculator. Plug in f(50) in to the calculator and see if that number is equal to your estimate. </div><img class="right"/></div> <div><img class="left"/><div class="alert gray"> My estimate was $L(50)=\frac{99}{14}$ or $L(50)=7.071428571$ If I plug it in the calculator then I get... $f(50)=7.07106781187$ Wow, I was pretty close! Is that all? </div></div> <div><div class="alert blue"> Yep, that's all. </div><img class="right"/></div> <div><img class="left"/><div class="alert gray"> Really? Omg, thank you so much for your help! </div></div> <div><div class="alert blue"> No problem! See you in class on Monday! </div><img class="right"/></div> --- To submit this assignment click on the Publish button ![Publish button icon](https://i.imgur.com/Qk7vi9V.png). Then copy the url of the final document and submit it in Canvas.