--- tags: stat mech, lecture --- # L04 Canonical ensemble ## Readings ([reference material](/fy9b5mX0Rui-Sii3wHTncg)) - Reading Kittel Ch. 3 - Reading Sethna Ch 6.1, 6.2 ## Notes [**Lecture 03 class notes**](https://web.physics.utah.edu/~rogachev/7310/L04%20Canonical%20ensemble.pdf) ### Ensembles - A [statistical ensemble](/JUkPDnqjQPmxuCONGrn4yw) is a collection of all accessible microstates of a system with associated probabilities. - [Canonical ensembles](/JUkPDnqjQPmxuCONGrn4yw) are the collection of possible states of a mechanical system in thermal equilibrium with a heat bath (or reservoir) at a fixed temperature T - A [microcanonical ensemble](/JUkPDnqjQPmxuCONGrn4yw) is a completely closed/isolated system ![](https://i.imgur.com/JbwR9mg.png) #### Helmholtz free energy $F = TS - E$ $\hspace{.5cm} = -kTln(Z)$ $dF = -SdT - PdV$ From which we have: ${\displaystyle S=\left.-\left({\frac {\partial F}{\partial T}}\right)\right|_{V,N},\quad P=\left.-\left({\frac {\partial F}{\partial V}}\right)\right|_{T,N},\quad \mu =\left.\left({\frac {\partial F}{\partial N}}\right)\right|_{T,V}.}$ #### Ideal gas partition function https://chem.libretexts.org/Bookshelves/Physical_and_Theoretical_Chemistry_Textbook_Maps/Supplemental_Modules_(Physical_and_Theoretical_Chemistry)/Statistical_Mechanics/Boltzmann_Average/Ideal_Gas_Partition_Function ### Partition function to get functions of state - [Using the partition function to obtain functions of state](https://www-thphys.physics.ox.ac.uk/people/AlexanderSchekochihin/A1/2011/handout6.pdf)