---
tags: stat mech, lecture
---
# L06 Internal and total chemical potential. Grand canonical ensemble
## Reading
none provided yet
## Notes
[class notes](https://web.physics.utah.edu/~rogachev/7310/L06%20Grand%20canonical.pdf)
### Grand Canonical Ensembles
T is fixed. N, E can be exchanged between system and reservoir.
Reservoir is huge, so chemical potential $\mu$ stays the same
#### Grand Partition Function
$Z_G = \sum e^{-\beta E_{x_i} + \beta \mu N_{x_i}}$
$\hspace{.8cm} = \sum_{N_j}e^{+\beta \mu (N_j)}*\sum_{x_i(N_j)}e^{+\beta E_{x_i}(N_j)}$
$\hspace{.8cm} = \sum_{N_j}e^{+\beta \mu (N_j)}*Z(N_j,V_j,T)$
$\hspace{2cm} F = -kTln(Z)$
$\hspace{.8cm} = e^{\beta \mu N^*}e^{-\beta F}$
$\hspace{.8cm} = e^{-\beta(F-\mu N)}$
Then probability of a particular microstate:
$P_{x_i} = \frac{e^{-\beta E_{x_i} + \beta \mu N_{x_i}}}{Z_G}$