--- tags: stat mech, lecture --- # L06 Internal and total chemical potential. Grand canonical ensemble ## Reading none provided yet ## Notes [class notes](https://web.physics.utah.edu/~rogachev/7310/L06%20Grand%20canonical.pdf) ### Grand Canonical Ensembles T is fixed. N, E can be exchanged between system and reservoir. Reservoir is huge, so chemical potential $\mu$ stays the same #### Grand Partition Function $Z_G = \sum e^{-\beta E_{x_i} + \beta \mu N_{x_i}}$ $\hspace{.8cm} = \sum_{N_j}e^{+\beta \mu (N_j)}*\sum_{x_i(N_j)}e^{+\beta E_{x_i}(N_j)}$ $\hspace{.8cm} = \sum_{N_j}e^{+\beta \mu (N_j)}*Z(N_j,V_j,T)$ $\hspace{2cm} F = -kTln(Z)$ $\hspace{.8cm} = e^{\beta \mu N^*}e^{-\beta F}$ $\hspace{.8cm} = e^{-\beta(F-\mu N)}$ Then probability of a particular microstate: $P_{x_i} = \frac{e^{-\beta E_{x_i} + \beta \mu N_{x_i}}}{Z_G}$