--- tags: stat mech, lecture --- # L03 Entropy, Temperature, Pressure, ChemPot. ## Readings ([reference material](/fy9b5mX0Rui-Sii3wHTncg)) - Reading Kittel Chapter 2 - Sethna Chapter 3 ## Notes [**Lecture 03 class notes**](https://web.physics.utah.edu/~rogachev/7310/L03%20Entropy%20TPM.pdf) #### 1st Law of Thermodynamics / The Thermodynamic Identity $dS = (\frac{\partial S}{\partial E})_{VN} dE + (\frac{\partial S}{\partial V})_{EN} dV + (\frac{\partial S}{\partial N})_{EV} dN$ ${\hspace{2.5cm} \frac{1}{T} \equiv (\frac{\partial S}{\partial E})_{VN}}$ ${\hspace{2.5cm} P \equiv T(\frac{\partial S}{\partial V})_{EN}}$ ${\hspace{2.5cm} \mu \equiv -T(\frac{\partial S}{\partial N})_{EV}}$ $\hspace{0.7cm} = \frac{dE}{T} + P\frac{dV}{T} - \mu \frac{dN}{T}$ From which we obtain $\fbox{dE = TdS - PdV + μdN}$ #### Liouville's theorem The density of system points in the vicinity of a given system point traveling through phase-space is constant with time. The Liouville equation describes the phase space distribution function's evolution in time. See **canonical transformation** in the [Dictionary](/JUkPDnqjQPmxuCONGrn4yw). Kittel (Chapter 14, eq (57)): $f(t+dt, r+dr, v+dv) = f(t,r,v)$ The Liouville Equation: $\frac{d\rho}{dt}= \frac{\partial\rho}{\partial t} +\sum_{i=1}^n\left(\frac{\partial\rho}{\partial q_i}\dot{q}_i +\frac{\partial\rho}{\partial p_i}\dot{p}_i\right)=0$ #### Partition Functions Everything we need to find in thermo can b found from the partition function \begin{array}{lll} &{\rm Function~of~state} & {\rm Statistical~mechanical~expression}\\ \hline\hline U & & -\frac{ d \ln Z}{ d \beta}\\ F & & -k_{ B } T \ln Z\\ \hline S & =-\left(\frac{\partial F}{\partial T}\right)_{V}=\frac{U-F}{T} & k_{ B } \ln Z+k_{ B } T\left(\frac{\partial \ln Z}{\partial T}\right)_{V} \\ p & =-\left(\frac{\partial F}{\partial V}\right)_{T} & k_{ B } T\left(\frac{\partial \ln Z}{\partial V}\right)_{T} \\ H & =U+p V & k_{ B } T\left[T\left(\frac{\partial \ln Z}{\partial T}\right)_{V}+V\left(\frac{\partial \ln Z}{\partial V}\right)_{T}\right] \\ G & =F+p V=H-T S~~~ & k_{ B } T\left[-\ln Z+V\left(\frac{\partial \ln Z}{\partial V}\right)_{T}\right] \\ C_{V} & =\left(\frac{\partial U}{\partial T}\right)_{V} & k_{ B } T\left[2\left(\frac{\partial \ln Z}{\partial T}\right)_{V}+T\left(\frac{\partial^{2} \ln Z}{\partial T^{2}}\right)_{V}\right] \end{array}