# RPiS Lista 1
## Zadanie 1

Korzystamy z wzoru

wtedy
- a)
$$
\sum_{k=0}^n \binom{n}{k}p^k(1-p)^{n-k}=(p+1-p)^n=1^n=1
$$
- b)
$$
\sum_{k=0}^n k\binom{n}{k}p^k(1-p)^{n-k}=\{k\binom{n}{k}=n\binom{n-1}{k-1}\}=\\
\sum_{k=0}^n n\binom{n-1}{k-1}p^k(1-p)^{n-k}=np\sum_{k=0}^n \binom{n-1}{k-1}p^{k-1}(1-p)^{n-k}=np*1=np
$$
## Zadanie 2

- a)
$$
\sum_{k=0}^\infty e^{-\lambda} \frac{\lambda^k}{k!}= e^{-\lambda} \sum_{k=0}^\infty \frac{\lambda^k}{k!} = e^{-\lambda} * e^\lambda = 1\\
$$
$\sum_{k=0}^\infty \frac{\lambda^k}{k!}$- szereg Taylora dla funkcji ekspotencjalnej
- b)
$$
\sum_{k=0}^\infty k *e^{-\lambda} \frac{\lambda^k}{k!}= e^{-\lambda} \sum_{k=0}^\infty k \frac{\lambda^k}{k!} = e^{-\lambda} \sum_{k=1}^\infty k \frac{\lambda^k}{k!} =\\
e^{-\lambda} \sum_{k=1}^\infty \frac{\lambda^k}{k-1!} = e^{-\lambda} \sum_{k=0}^\infty \frac{\lambda^{k+1}}{k!}=e^{-\lambda} \lambda \sum_{k=0}^\infty \frac{\lambda^k}{k!}=\\
e^{-\lambda}*\lambda*e^\lambda=\lambda
$$
## Zadanie 3

Użyjemy całkowania przez części:
$$
\Gamma(p)=\int_0^\infty t^{p-1}e^{-t} dt = \lim_{t\to\infty}(-t^{p-1}e^{-t}) - (-0^te^{-0})+\int_0^{\infty}(p-1)t^{p-2}e^{-t} dt\\
= 0 + (p-1)\int_0^{\infty}t^{p-2}e^{-t} dt =(p-1)(p-2)\int_0^{\infty} t^{p-3} e^{-t} dt = \dots = \\
(p-1)!
$$
## Zadanie 4

a)
$$
\int_0^\infty f(x) dx=\int_0^\infty \lambda \exp(-\lambda x) =\\
\lambda \int_0^\infty e^{-\lambda x} =\Big[du=\frac{-1}{\lambda} dx,\,\,-\lambda x= u \Big]=\\
\lambda * \frac{-1}{\lambda} \int_0^{-\infty} e^u du= e^0 - e^{-\infty} = 1
$$
b)
$$
\lambda \int_0^\infty x*e^{-\lambda x} dx =\Big[ f(x)=x\,\,\, f'(x)=1 \,\,\,g'(x)=e^{-\lambda x} \,\,\,g(x)=-\frac{e^{-\lambda x}}{\lambda}\Big]=\\
\lambda * (-0-(-0) +\frac{1}{\lambda} \int_0^\infty e^{-\lambda x}dx)=
\lambda * \frac{1}{\lambda} * \frac{1}{\lambda}=\frac{1}{\lambda}
$$
## Zadanie 5

Do pierwszego wiersza dodajemy wszystkie pozostałe co daje nam:
$$
\begin{bmatrix}
n & 0 & 0 & \dots & 0\\
1 & 1 & 0 & \dots & 0\\
1 & 0 & 1 & \dots & 0\\
\dots & & & \dots & \\
1 & 0 & 0 & \dots & 1\\
\end{bmatrix}
$$
jest to macierz dolnotrójkątna a jej wyznacznik to n.
## Zadanie 7

a)
$$
\sum_{k=1}^n(x_k-\overline{x})^2=\sum_{k=1}^n x_k^2 -\sum_{k=1}^n 2x_k\overline{x} + \sum_{k=1}^n \overline{x}^2=\\
\sum_{k=1}^n x_k^2 -2\overline{x}\sum_{k=1}^n x_k + n\overline{x}=
\sum_{k=1}^n x_k^2 - 2\overline{x}n\overline{x} + n\overline{x}=\\
\sum_{k=1}^n x_k^2 - n\overline{x}
$$
b)
$$
\sum_{k=1}^n(x_k-\overline{x})(y_k-\overline{x})=\sum_{k=1}^nx_ky_k -\sum_{k=1}^nx_k\overline{y}-\sum_{k=1}^ny_k\overline{x}+\sum_{k=1}^n\overline{xy}=\\
\sum_{k=1}^nx_ky_k -n\overline{x}\overline{y}-n\overline{y}\overline{x}+n\overline{xy}=\\
\sum_{k=1}^nx_ky_k-n\overline{xy}
$$
{"metaMigratedAt":"2023-06-15T20:14:04.082Z","metaMigratedFrom":"YAML","title":"RPiS Lista 1","breaks":true,"contributors":"[{\"id\":\"3b91419d-168f-49d4-ba77-270704490efb\",\"add\":3288,\"del\":182}]"}