<style> .reveal, .reveal h1, .reveal h2, .reveal h3, .reveal h4, .reveal h5, .reveal h6 { font-family: "Kai"} .rightalign {text-align:right} </style> # <h2>Unpaired Image-to-Image Translation using Cycle-Consistent Adversarial Networks</h2> ##### 報告人: 陳雪芬 ##### 報告人: 陳居億 ##### 時間: 2020/10/22 ###### https://hackmd.io/@NtutShare/Syfc_qpwv --- ## Outline 1. Introduction 2. Formulation 4. Implementation 11. Limitations and Discussion --- ## Introduction :::info Image-to-image translation <!-- .element: class="fragment" data-fragment-index="1" --> ::: ![](https://i.imgur.com/Unox2GM.png =x500) <!-- ![](https://i.imgur.com/sHYaUcE.png) --> --- ## Introduction #### Unpaired Image-to-Image Translation ![](https://i.imgur.com/FwTqqUP.png) --- ## Introduction #### Cycle Consistency ![](https://i.imgur.com/AHQmUI2.png) --- ## Introduction #### Neural Style Transfer - mapping between two image collections, rather than between two specific images - capture correspondences between higher-level appearance structures --- ## Formulation ![](https://i.imgur.com/0wpQWBG.png) --- ## Formulation #### adversarial losses ![](https://i.imgur.com/Z6fAp9i.png) --- ## Formulation #### cycle consistency losses ![](https://i.imgur.com/BN6qvDW.png) --- ## Formulation #### cycle consistency losses ![](https://i.imgur.com/YpvXwB6.png) --- ## Formulation #### Full Objective ![](https://i.imgur.com/ztPTrVw.png) :::danger ![](https://i.imgur.com/cr0MLua.png)<!-- .element: class="fragment" data-fragment-index="1" --> ::: --- ## Implementation --- #### Network Architecture ###### generative networks ![](https://i.imgur.com/7fHV402.png =x300) --- #### Network Architecture ##### discriminator networks(from PatchGANs) - PatchGANs - fully convolutional neural networks - more effective - focus on surface-level features ![](https://i.imgur.com/h8mjCqA.png =300x)![](https://i.imgur.com/YncESUK.png =300x) <!-- ![](https://i.imgur.com/h8mjCqA.png) --> <!-- - a patch-level discriminator architecture has fewer parameters than a full-image discriminator and can work on arbitrarily-sized images in a fully convolutional fashion --> --- #### Results ![](https://i.imgur.com/ekStboy.png) --- #### Comparation ![](https://i.imgur.com/tnhXRvm.png) --- ## Limitations and Discussion #### Limitations - characteristics of the training datasets - geometric changes ![](https://i.imgur.com/UCevOxN.png =x250) --- ## Limitations and Discussion #### Discussion - lingering gap between paired and unpaired --- ## 謝謝聆聽
{"metaMigratedAt":"2023-06-15T14:32:43.479Z","metaMigratedFrom":"YAML","title":"Unpaired Image-to-Image Translation using Cycle-Consistent Adversarial Networks","breaks":true,"description":"Unpaired Image-to-Image Translation using Cycle-Consistent Adversarial Networks 報告","slideOptions":"{\"spotlight\":{\"enabled\":false},\"progress\":true,\"slideNumber\":true,\"touch\":true,\"help\":true,\"hideAddressBar\":true,\"allottedMinutes\":1,\"defaultTiming\":90}","contributors":"[{\"id\":\"42030b84-b41b-43df-89f8-28bb31bb7f8c\",\"add\":3854,\"del\":760},{\"id\":\"acbd5a4a-8f80-4385-98b0-675362e4a11e\",\"add\":1143,\"del\":1284}]"}
    252 views
   Owned this note