<style>
.reveal, .reveal h1, .reveal h2, .reveal h3, .reveal h4, .reveal h5, .reveal h6 { font-family: "Kai"}
.rightalign {text-align:right}
</style>
# <h2>Yes, we GAN: Applying Adversarial Techniques for Autonomous Driving</h2>
##### 報告人: 陳雪芬
##### 報告人: 陳居億
##### 時間: 2020/10/15
###### https://hackmd.io/@NtutShare/SJ34R9EPw
---
## Outline
1. Introduction
2. Overview of GAN
3. GAN Applications for autonomous driving
4. Our Results
5. Discussion
6. Conclusions
<!-- 2. Problem Formulation/Research Question/Theoretical Framework
2. Challenges, Issues & Difficulties
2. Methodology/Case Study
3. Experimental Results/Numerical Testing/Analysis
4. Discussion/Conclusion
-->
---
## Introduction

---
## Overview of GAN
- Vanilla GAN
- Prominent Derivatives of GAN
- GAN:Recent Advances
---
### Vanilla GAN

---
### Vanilla GAN
- Advantage
- back-propagation
- wide variety of functions
- Disadvantage
- explicit representation of $p_g(x)$
- simultaneous optimization
---
### Prominent Derivatives of GAN
- e.g.
- Conditional Generative Adversarial Nets (CGAN)
- Wasserstein GAN (WGAN)
- Improved WGAN
- Boundary-Seeking Generative Adversarial Networks(BGAN)
---
### GAN:Recent Advances
- e.g.
- BigGAN
- Self-Attention Generative Adversarial Network (SAGAN)
---
## GAN Applications for autonomous driving
- Advanced Data Augmentation
<!-- - Semi-supervised/Unsupervised Learning
- Learned Loss Functions -->
- Adversarial training/testing
---
### Advanced Data Augmentation

---
### Advanced Data Augmentation
- GAN create realitic looking images
- e.g.
- CGAN、CycleGAN+UNIT、AC-GAN
---
### Advanced Data Augmentation
- 2D Synthesis
- Pix2Pix、SRGAN、CycleGAN、DiscoGAN、StarGAN、UNIT、Pix2PixHD、BicycleGAN、MUNIT、Augmented GAN

---
### Advanced Data Augmentation
- 2D Synthesis

---
### Advanced Data Augmentation
- 3D Synthesis
- 3D-GAN、PrGAN、PC-GAN

---
### Advanced Data Augmentation
- Video Synthesis
- TGAN
- <iframe width="560" height="315" src="https://www.youtube.com/embed/dkoi7sZvWiU" frameborder="0" allow="accelerometer; autoplay; clipboard-write; encrypted-media; gyroscope; picture-in-picture" allowfullscreen></iframe>
---
### Advanced Data Augmentation
- Object Detection
- SeGAN、Perceptual-GAN
<!--  !-->

---
### Advanced Data Augmentation
- Domain Adaptation
- Pixel level、GraspGAN

---
### Advanced Data Augmentation
- Inpainting

---
### Advanced Data Augmentation
- Super Resolution
- SRGAN

---
### Advanced Data Augmentation
- Super Resolution
<iframe width="560" height="315" src="https://www.youtube.com/embed/z-ZJqd4eQrc" frameborder="0" allow="accelerometer; autoplay; clipboard-write; encrypted-media; gyroscope; picture-in-picture" allowfullscreen></iframe>
---
### Adversarial training/testing
- EL-GAN
- 
---
## Our Results

---
## Our Results
- e.g.
- CycleGAN、MUNIT

---
## Discussion
- Quantitative Evaluation
- Adversarial examples and Safety
- Optimization Stability
---
## Conclusions
- autonomous driving applications
- main challenges and open problems
---
## 謝謝聆聽
{"metaMigratedAt":"2023-06-15T14:12:38.330Z","metaMigratedFrom":"YAML","title":"Yes, we GAN: Applying Adversarial Techniques for Autonomous Driving","breaks":true,"description":"Yes, we GAN Applying Adversarial Techniques for Autonomous Driving 報告","slideOptions":"{\"spotlight\":{\"enabled\":false},\"progress\":true,\"slideNumber\":true,\"touch\":true,\"help\":true,\"hideAddressBar\":true,\"allottedMinutes\":1,\"defaultTiming\":90}","contributors":"[{\"id\":\"f137db06-df14-4ea9-be67-322afd1627be\",\"add\":3433,\"del\":1372},{\"id\":\"42030b84-b41b-43df-89f8-28bb31bb7f8c\",\"add\":7158,\"del\":5152}]"}