--- tags: Mechanics, ss, ncu author: N0-Ball title: Motion of Particle GA: UA-208228992-1 --- # Motion of Particle [Toc] ## Kinematic Equations $$ \frac{d \vec x}{dt} = \vec v $$ $$ \frac{d \vec v}{dt} = \vec a $$ **Newton's Second Law** $$ \vec F = m \vec a = m \frac{d\vec v}{dt} $$ ## Linear Momentum & Momentum Therorem Linear Momentum $\vec p$ : $\vec p = m \cdot \vec v$ Since force $\vec F = m \cdot \vec a = m \cdot \frac{d \vec v}{dt}$ ### The differential momentum therorem - For one dimensional problem: $$ \frac{dp(t)}{dt} = \dot p(t) = \vec F \\[1em] \frac{dp(t)}{dt} = \dot p(t) = m \cdot \dot v(t) = F[x(t), v(t), t] $$ - Fow two dimensional problem: $$ \frac{d \vec p}{dt} = \vec F $$ :::warning Relatistic momentum ::: $$ \vec p = \gamma m \vec v $$ where $$ \gamma = \frac{1}{sqrt(1 - (\frac{v}{c})^2)} $$ ## The Integral Momentum Therorem $$ \vec p = \int\vec F dt $$ **or** $$ p(t_2) - p(t_1) = \int^{t_2}_{t_1} F(t) dt $$ $$ p(t_2) - p(t_1) = \int^{t_2}_{t_1} F[x(t), v(t), t] dt $$ # Kinetic Energy & Energy Theorem $$ T = \frac{1}{2} m v^2 = \frac{1}{2} m \vec v \cdot \vec v $$ ## Divergence form - For one dimensional form $$ \frac{dT(t)}{dt} = mv \frac{dv}{dt} = v F $$ - For two up dimensional form $$ \frac{dT}{dt} = m \vec v \cdot \frac{d \vec v}{dt} = \vec v \cdot \vec F = Power $$ ## Integrated form - One dimensional form $$ \Delta T = \int^{t_2}_{t_1}F(t)v(t)dt $$ - Two or three dimensional form $$ \Delta T = \int^{t_2}_{t_1}\vec F[\vec x (t)] d \vec x $$ ## One dimentional motion of a partical $$ \frac{dv(t)}{dt} = \frac{F}{m} \Rightarrow v(t_1) = v(t_0) + \int^{t_2}_{t_1} \frac{F(t)}{m} dt $$ ## Damping force $$ \begin{aligned} \frac{dv}{dt} &= \frac{F(v)}{m} = \frac{1}{m}(-bv) \\[1em] \frac{1}{v} dv &= -\frac{b}{m} dt \\[1em] \Rightarrow ln\frac{v_1}{v_0} &= - \frac{bt}{m} \\[1em] \Rightarrow v_1 &= v_0 e ^{\frac{-bt}{m}} \end{aligned} $$ ## Conservation Force $$ \begin{aligned} &\frac{dv}{dt} = \frac{F(x)}{m} = \frac{1}{m}[-\frac{dV(x)}{dx}] \\[1em] &\Rightarrow v dv = \frac{1}{m}[-\frac{dV(x)}{dx}] v dt = \frac{1}{m}[-\frac{dV(x)}{dx}] \frac{dx}{dt} dt \\[1em] &\Rightarrow \int v dv = \int \frac{-1}{m}dV(x)\\[1em] &\Rightarrow \frac{1}{2} (\Delta v)^2 = \frac{-1}{m} \Delta V + C\\[1em] &\Rightarrow \frac{1}{2} m (\Delta v)^2 + \Delta V = C \end{aligned} $$ ## Falling bodies $$ \begin{split} & \quad \frac{d^2 z}{dt^2} = \frac{dv_z}{dt} = - \frac{mg}{m} = -g \\[1em] &\Rightarrow \int d \left(\frac{dz}{dt}\right) = \int -g dt \\[1em] &\Rightarrow \int dz = \int -gt dt \\[1em] &\Rightarrow z = - \frac{g}{2} t^2 \end{split} $$ ## Simple Harmonic oscillator $$ m \ddot x = -kx \Rightarrow \ddot x = - \frac{k}{m}x $$ $$ x = \cos \left(\sqrt{\frac{k}{m}} t \right), \quad \omega ^2 = - \frac{k}{m} $$ ## Linear differential equations with constant coefficients $$ a_2 \ddot x + a_1 \dot x + a_0 x = f(t) $$ **Laplace transfomation** ## Damped Harmonic Oscillator $$ m \ddot x + b \dot x + kx = 0 $$ **Let $x = e^{\lambda t}, \quad \dot x = \lambda e^{\lambda t}, \quad \ddot x = \lambda^2 e^{\lambda t}$** $$ \begin{split} & \quad \left (\lambda^2 + \frac{b}{m} \lambda + \frac{k}{m} \right) e^{\lambda t} = 0 \\[1em] & \Rightarrow \lambda = \frac{-\frac{b}{m} \pm \sqrt{\left(\frac{b}{m}\right)^2 - 4 \frac{k}{m}}}{2} \end{split} $$ **Let $\gamma = \frac{b}{2m}, \quad \omega_0 = \sqrt{\frac{k}{m}}$** ### Case 1 $\gamma^2 \gt \omega_0^2$ $$ \begin{split} & \quad \lambda_{ \begin{array}{c} 1 \\ 2 \end{array} } &= - \gamma \pm \sqrt{\gamma ^ 2 - \omega_0^2} \\[1em] &\Rightarrow x &= c_1 e ^ {\lambda_1 t} + c_2 e^{\lambda_2t} \end{split} $$ ### Case 2 $\gamma^2 = \omega_0^2$ $$ \begin{split} &\quad \lambda = - \gamma \\[1em] &\Rightarrow x = (c_1 + c_2 t) e ^{-\gamma t} \end{split} $$ ### Case 3 $\gamma^2 \lt \omega_0^2$ $$ \begin{split} & \quad \lambda_{ \begin{array}{c} 1 \\ 2 \end{array} } &= - \gamma \pm \omega i, \quad \omega = \omega_0 \sqrt{1-\left( \frac{\gamma}{\omega_0}\right)^2} \\[1em] &\Rightarrow x &= e^{- \gamma t} \left[A \cos \left( \omega t\right) + B \sin \left( \omega t \right) \right] \end{split} $$
×
Sign in
Email
Password
Forgot password
or
By clicking below, you agree to our
terms of service
.
Sign in via Facebook
Sign in via Twitter
Sign in via GitHub
Sign in via Dropbox
Sign in with Wallet
Wallet (
)
Connect another wallet
New to HackMD?
Sign up