--- tags: Mechanics, ss, ncu author: N0-Ball title: HW2 GA: UA-208228992-1 --- [Toc] # Question ![](https://i.imgur.com/CCwPUIJ.jpg) # Preknowledge $$ \hat r = cos(\theta) \hat x + sin(\theta) \hat y \\[1em] \hat \theta = -sin(\theta) \hat x + cos(\theta) \hat y $$ Since $\hat r \cdot \hat \theta = 0$ and $\hat r = cos(\theta) \hat x + sin(\theta) \hat y$ as definition $$ \frac{d \hat r}{d \theta} = -sin(\theta) \hat x + cos(\theta) \hat y = \hat \theta $$ $$ \frac{d \hat \theta}{d \theta} = -cos(\theta) \hat x + -sin(\theta) \hat y = - \hat r $$ # 1. Find :::info $$ \frac{d \hat r}{dt} $$ ::: $$ \begin{aligned} \frac{d \hat r}{dt} &= \frac{d \hat r}{d \theta} \times \frac{d \theta}{d t} \\[1em] &= \hat \theta \cdot \dot \theta \end{aligned} $$ ## Ans. $$ \hat \theta \cdot \dot \theta $$ # 2. :::info $$ \frac{d \hat\theta}{dt} $$ ::: $$ \begin{aligned} \frac{d \hat \theta}{dt} &= \frac{d \hat \theta}{d \theta} \times \frac{d \theta}{dt} \\[1em] &= - \hat r \cdot \dot \theta \end{aligned} $$ ## Ans. $$ (- \hat r \cdot \dot \theta) $$ # 3. :::info $$ (v_r, v_\theta, v_z) $$ ::: $$ \begin{aligned} \vec v &= \frac{\vec r}{dt} = \frac{r \hat r(\theta) + z(t) \hat z}{dt} \\[1em] &= \dot r \hat r + r \times \frac{d \hat r}{dt} + \dot z \hat z \\[1em] &= \dot r \hat r + r \times \dot \theta \cdot \hat \theta + \dot z \hat z \end{aligned} $$ ## Ans. $$ \begin{aligned} \vec v &= \dot r \hat r + r \times \dot \theta \cdot \hat \theta + \dot z \hat z\\[1em] &=(\dot r, r \times \dot \theta, \dot z) = (v_r, v_\theta, v_z) \end{aligned} $$ # 4. :::info $$ (a_r, a_\theta, a_z) $$ ::: $$ \begin{aligned} \vec a &= \frac{d \vec v}{dt} = \frac{d(\dot r \hat r + r \times \dot \theta \cdot \hat \theta + \dot z \hat z)}{dt} \\[1em] &= \ddot r \hat r + \dot r \dot \theta \hat \theta + \dot r \dot \theta \hat \theta + r \ddot \theta \hat \theta - r \dot \theta \hat r \dot \theta + \ddot z \hat z\\[1em] &= (\ddot r - r \dot \theta ^ 2) \hat r + (2 \dot r \dot \theta + r \ddot \theta) \hat \theta + \ddot z \hat z \end{aligned} $$ ## Ans. $$ \begin{aligned} \vec a &= (\ddot r - r \dot \theta ^ 2) \hat r + (2 \dot r \dot \theta + r \ddot \theta) \hat \theta + \ddot z \hat z \\[1em] &= (\ddot r - r \dot \theta ^ 2, 2 \dot r \dot \theta + r \ddot \theta, \ddot z) = (a_r, a_\theta, a_z) \end{aligned} $$