--- tags: Communication System Design, ss, ncu author: N0-Ball title: Converters GA: UA-208228992-1 --- # Intro ## Radio Receivers - All radio receivers use Superhet principle - Superhet receiver converts received signal to intermediate frequency (IF) Superhet : supersonic heterodyne Heterodyne : frequency multiplication Supersonic : above audible hearing range ### TRF :::info a **sequence of RF amplifiers** and tuned narrow bandpass filters ::: - Tuned filter must have $Q = \frac{f}{B} = 555$ - **$f$** : frequency - **$B$** : bandwidth - Almost impossible - Q for tuned RF filter is typically < 50 :::warning FM radio at ~100 MHz, channel bandwidth is 180 kHz ::: ```graphviz digraph { rankdir=LR; Antenna [shape="point", xlabel="Antenna"] RF_amp1 [shape="triangle", orientation=30, label="RF\namp"] BPF1 [shape="square", label="Tuned\nBPF"] RF_amp2 [shape="triangle", orientation=30, label="RF\namp"] BPF2 [shape="square", label="Tuned\nBPF"] dots [shape="none", label="..."] Antenna -> RF_amp1 -> BPF1 -> RF_amp2 -> BPF2 -> dots } ``` **Antenna** -> RF amp -> Tuned BPF -> RF amp -> Tuned BPF ... # Frequency Converter Multiply input signal x(t) by local oscillator (LO) signal - Shifts signal (to IF) **LO output** - sine wave, s(t) - frequency f~LO~ $$ s(t) = \cos (\omega_{LO}t) $$ **Output of multiplier** $y'(t)$ $$ \begin{split} y'(t) &= x(t) \times s(t) = A \cos(\omega_c t) \times \cos(\omega_{LO} t) \\[1em] &= \frac{1}{2} A \cos((\omega_c + \omega_{LO})t) + \frac{1}{2} A \cos((\omega_c - \omega_{LO}) t) \\[1em] &= \frac{1}{2} A \cos((\omega_c - \omega_{LO}) t) \quad \text{(BPF often selects lower side band)} \end{split} $$ ## Image Frequencies :::warning There are always two RF frequencies that can be translated to the desired IF ::: - Image frequency is always 2x IF from signal - Need tuned RF filter to exclude image ![](https://i.imgur.com/OQMmRXP.png) 1. Signal -> Tuned RF BPF (Wanted Signal over LO left) 2. Signal Mix with LO (Signal with IF) 3. Signal -> IF BPF (IF Left) ### Example :::info Signal 89.1 Mhz with LO 10.7 MHz ::: IF: - $89.1 - 78.4 = 10.7$ - $78.4 - 67.7 = 10.7$ ## Simplest case of x(t) = RF carrier $$ x(t) = A \cos( \omega_c t) $$ ## Example #1 :::info - Received signal at 89.1 MHz (carrier) - Set LO frequency to 78.4 MHz - BPF output for lower sideband at IF - $y(t) = \frac{1}{2} A \cos( (\omega_t - \omega_{LO}) t)$ ::: $$ f_{IF} = f_c - f_{LO} = 10.7\ mHz $$ ## Example #2 :::info - Target signal change to 99.1MHz - IF set to process 10.7 mHz ::: $$ \begin{split} &f_{IF} = f_c - f_{LO}\\[1em] &\Rightarrow f_{LO} = f_c - f_{IF} = 88.4\ mHz \end{split} $$ :::warning since IF BPF is fixed, targeted frequency can be found by **adjusting LO frequency** ::: # Narrowband Filter at Fixed IF Frequency > 信號要搭飛機到目標 > 要上飛機(Modulation) > 到站了要下飛機(Demodulation) [name=Cissi] ## Requires :::info Difficult to achieved with L-C filters ::: - narrow bandwidth - steeep sides - flat top ## Compare - RF BPF - broadband filter - reject image channel - IF BPF - narrowband filter - reject adjacent channels # Implementing Frequency Conversion Any **non-linear circuit** will cause multiplication of input frequency **For RF/Microwave** - difficult - expensive ## Simplest circuit - switch :::info - Signal $v(t)$ applied to a switch - Output: $y(t)$ ::: ### Open $$ y(t) = 0 \times v(t) = 0 $$ ### Close $$ y(t) = 1 \times v(t) = v(t) $$ ### Summary $$ y(t) = s(t) \times v(t) \\[1em] \left\{\begin{matrix} s(t) = 0&,\ where\ nT \le t \lt \frac{T}{4} + nT \\[1em] s(t) = 1&,\ where\ \frac{T}{4} + nT \le t \lt \frac{T}{2} + nT \\[1em] \end{matrix}\right. ,\ 2n = m,\ m \in \Bbb Z \cup 0 $$ **Where** $s(t)$ : Switching Function ### Multiply **Fourier series** $$ s(t) = \frac{1}{2} + \frac{2}{\pi} \left[ \cos (\omega_0t) - \frac{1}{3} \cos (3 \omega_0t) + \cdots \right] $$ **Output** $$ y(t) = v(t) times s(t) = v(t) \times + \left[ \frac{1}{2} + \frac{2}{\pi} \cos (\omega_0t) - \frac{2}{3\pi} \cos (3 \omega_0t) + \cdots \right] $$ **BPF** use BPF to select $$ y(t) = v(t) \times \frac{2}{\pi} \cos (\omega_0 t) $$ **If $v(t) = A \cos(\omega t)$** $$ \begin{split} y(t) &= A \cos(\omega t) \times \frac{2}{\pi} \cos (\omega_0 t) \\[1em] &= \frac{2A}{\pi} \left[ \cos \left( (\omega - \omega_0) t \right) + \cos \left( (\omega + \omega_0) t \right) \right] \end{split} $$ ## Diode ![](https://wiki.analog.com/_media/university/courses/eps/eps_diode-curves-f2.png?w=500&tok=34583e) - called mixer in radio receiver jargon - used in up-convertors and down-convertors ## Others - Balanced mixer (modulator) - Double balanced mixer (DBM) - Gain controlle amplifier :::info target: multiplication of input signal by a local oscilator frequency ::: # Summary - Almost all radio receivers use **superhat** design - **Frequency conversion** is the key factor - multiplication (non-linear circuit) - select wih BPF after multiplication - Incoming signal -> Intermediate Frequency - IF has - fixed frequency amplifier - narrow bandpass filters - = selectivity - tuned RF bandpass filter removes image frequency noise