# 2024/03/13 ## Hydrostatic Equation ### Hydrostatic This is vertical momentum equation with scale analysis. There is the scale of the equation: |Terms|$\frac{Dw}{Dt}$|$\frac{u^2+v^2}{a}$|$-\frac{1}{\rho}\frac{\partial p}{\partial z}$|$2\Omega u cos\phi$|$g$|$\nu\nabla^2 w$| |:---:|:---:|:---:|:---:|:---:|:---:|:---:| |Scale|$10^{-7}$|$10^{-5}$|$10$|$10^{-3}$|$10$|$10^{-15}$| For primary approximation, there is: $$ \begin{aligned} 0 &\approx -\frac{1}{\rho}\frac{\partial p}{\partial z}-g\\ \\ \Rightarrow \frac{\partial p}{\partial z} &\approx -\rho g \end{aligned} $$ This relation shows that hydrostatic condition is almost the equilibrium state of vertical motion in atmosphere. ### Hydrostatic equation For discussing the motion under equilibrium state, we define pressure and density field as $p_0\;(z)$ and $\rho_0\;(z)$, respectively. $$ \frac{1}{\rho_0}\frac{dp_0}{dz} = -g $$ ## Hydrostatic Approximation 1. Assumption: Linearization Consider field variables are composited of mean-state and perturbation. Therefore, pressure and density field can be written as: $$ \begin{aligned} &p(x, y, z, t) = p_0(z) + p^\prime (x, y, z ,t)\\ & \rho(x, y, z, t) = \rho_0(z) + \rho^\prime (x, y, z ,t) \end{aligned} $$ 2. Scale analysis With hydrostatic equation, there is: $$ \begin{aligned} &-\frac{1}{\rho}\frac{\partial p}{\partial z}=g\\ \\ \Rightarrow &-\frac{1}{\rho_0+\rho^\prime}\frac{\partial (p_0+p^\prime)}{\partial z} = g\\ \end{aligned} $$ With Taylor's series, $(1+x)^{-1} = 1-x$ $$ -\frac{1}{\rho_0}(1-\frac{\rho^\prime}{\rho_0})(\frac{d p_0}{dz}+\frac{\partial p^\prime}{\partial z})=g $$ Ignoring terms with smaller order of magnitude: $$ \begin{aligned} &-\frac{1}{\rho_0}\frac{dp_0}{dz}-\frac{1}{\rho_0}\frac{\partial p^\prime}{\partial z}+\frac{\rho^\prime}{\rho_0^2}\frac{dp_0}{dz}\approx g\\ \\ \Rightarrow &-\frac{1}{\rho_0}\frac{\partial p^\prime}{\partial z}-\rho^\prime g\approx 0 \end{aligned} $$ Therefore, no matter whether the equilibrium state is reached or not, hydrostatic equation is a good proxy of vertical motion.