# 2024/03/20 ## Governing equations in isobaric coordinate ### Difference between z- and p-coordinate ||Mass field|Motion field| |:---:|:---:|:---:| |z-coord|$p,\;T,\;\rho$|$u, v, w$| |p-coord|$\Phi,\;T,\;\rho$|$u,v,\omega$| In p-coordinate, pressure is substituted by geopotential, and vertical velocity is substituted by materal derivative of pressure change. ### Transform between Eulerian and Lagrangian derivatives In z-coordinate: $$ \begin{aligned} \frac{DB}{Dt} = \frac{\partial B}{\partial t}+u\frac{\partial B}{\partial x}+v\frac{\partial B}{\partial y}+w\frac{\partial B}{\partial z} \end{aligned} $$ With hydrostatic equation: $$ \begin{aligned} &\frac{DB}{Dt} = \frac{\partial B}{\partial t}+u\frac{\partial B}{\partial x}+v\frac{\partial B}{\partial y}+\frac{\partial z}{\partial p}\frac{\partial p}{\partial t}\frac{\partial B}{\partial p}\frac{\partial p}{\partial z}\\ \\ \Rightarrow &\frac{DB}{Dt} = \frac{\partial B}{\partial t}+u\frac{\partial B}{\partial x}+v\frac{\partial B}{\partial y}+\omega\frac{\partial B}{\partial p} \end{aligned} $$ where $\omega = \frac{\partial p}{\partial t}$ ### Horizontal momentum equation $$ \frac{D\vec{U}}{Dt} = -\frac{1}{\rho}\nabla_h p-f\hat{k} \times \vec{U} $$ With PGF in isobaric system: $$ \frac{D\vec{U}}{Dt} = -(\nabla_h \Phi)_p-f\hat{k} \times \vec{U} $$ For component equation: $$ \begin{cases} & \frac{Du}{Dt} = -\frac{\partial \Phi}{\partial x}+fv\\ \\ & \frac{Dv}{Dt} = -\frac{\partial \Phi}{\partial y}-fu \end{cases} $$ For geostrophic wind in p-coordinate: $$ \begin{cases} & 0 = -\frac{\partial \Phi}{\partial x}+fv_g\\ \\ & 0 = -\frac{\partial \Phi}{\partial y}-fu_g \end{cases} $$ $$ \begin{cases} & u_g = -\frac{1}{f}\frac{\partial \Phi}{\partial x}\\ \\ & v_g = \frac{1}{f}\frac{\partial \Phi}{\partial y} \end{cases} $$ For vectorial form: $$ \vec{V_g} = -\frac{1}{f}\hat{k}\times(\nabla_h\Phi)_p $$ ### Hydrostatic equation In z-coordinate: $$ \begin{aligned} &\frac{\partial p}{\partial z} = -\rho g\\ \\ \Rightarrow &g\frac{\partial z}{\partial p} = -\alpha = -\frac{RT}{p}\\ \\ \Rightarrow &\frac{\partial \Phi}{\partial (lnp)} = -RT \end{aligned} $$ ### Equation of state $$ p = \rho RT $$ ### Continuity equation In z-coordinate, Eulerian derivation: $$ \frac{\partial \rho}{\partial t} + \nabla\cdot(\rho\vec{v}) = 0 $$ or in Lagrangian derivation: $$ \frac{D \rho}{D t} + \rho \nabla\cdot(\vec{v}) = 0 $$ In equation, the mass of a parcel is: $$ \delta M = \rho\;\delta x\;\delta y\;\delta z $$ With hydrostatic equation, the mass of parcel can be written as: $$ \delta M = -g\;\delta x\;\delta y\;\delta p $$ Mass is conserved under Lagrangian frame: $$ \begin{aligned} &\frac{1}{\delta M}\frac{D(\delta M)}{Dt} = 0\\ \Rightarrow & \frac{1}{\delta x}\frac{D(\delta x)}{Dt}+\frac{1}{\delta y}\frac{D(\delta y)}{Dt}+\frac{1}{\delta p}\frac{D(\delta p)}{Dt} = 0 \\ \Rightarrow & \frac{\partial u}{\partial x}+\frac{\partial v}{\partial y}+\frac{\partial \omega}{\partial p} = 0\\ \Rightarrow & \nabla_h\cdot \vec{U}+\frac{\partial \omega}{\partial p} = 0 \end{aligned} $$ ### Thermal equation In z-coordinate $$ C_p \frac{DT}{Dt} -\alpha \frac{Dp}{Dt} = \frac{Dq}{Dt} $$ With expansion of Eulerian frame in p-coordinate: $$ \begin{aligned} &C_p (\frac{\partial T}{\partial t}+\vec{U}\cdot\nabla T+\omega\frac{\partial T}{\partial p}) -\alpha \frac{Dp}{Dt} = \frac{Dq}{Dt} \\ \\ \Rightarrow &(\frac{\partial T}{\partial t}+\vec{U}\cdot\nabla T) - (\frac{\alpha}{C_p}-\frac{\partial T}{\partial p})\omega = \frac{1}{C_p}\frac{Dq}{Dt} \\ \\ \Rightarrow &(\frac{\partial T}{\partial t}+\vec{U}\cdot\nabla T) - S_p\omega = \frac{1}{C_p}\frac{Dq}{Dt} \end{aligned} $$ where $S_p$ can be regarded as stability in p-coordinate\ ## Balanced flow ### Natural coordinate 1. Definition ![image](https://hackmd.io/_uploads/B12H6pFR6.png) Axis of natural coordinate is tangential and normal to the streamlines, written as $\hat{t}, \hat{n}$, respectively. For vertical direction, there is $\hat{k}$-axis, which is defined as: $$ \hat{k} = \hat{t}\times\hat{n} $$ 2. Relation with Cartesian coordinate: ![image](https://hackmd.io/_uploads/ByLn0pYCa.png) The relations can be written as: $$ \begin{cases} & \hat{t} = <cos\psi, sin\psi>\\ & \hat{n} = <-sin\psi, cos\psi>\\ \end{cases} $$ This expression shows that the natural coordinate is rotating of Cartesian coordinate. ### Horizontal momentum equation in natral coordinate In p-coordinate, horizontal momentum equation can be written as: $$ \frac{D\vec{U}}{Dt} = -\hat{k}\times(\nabla\vec{U})-\nabla_h \Phi $$ This equation can be rewritten as: $$ \frac{D(U\hat{t})}{Dt} = \frac{DU}{Dt}\hat{t}+U\frac{D\hat{t}}{Dt} $$ With geometric relation, expression above can be written as: $$ \frac{D(U\hat{t})}{Dt} = \frac{DU}{Dt}\hat{t}+\frac{U^2}{R}\hat{n} $$ where $\frac{U^2}{R}\hat{n}$ is centripetal force. Also, the Coriolis force in natural coordinate can be written as: $$ -f\hat{k}\times{\vec{U}} = -fU\hat{n} $$ With these equations, there is horizontal momentum equation in natral coordinate: $$ \begin{cases} &\frac{DU}{Dt} = -\frac{\partial \Phi}{\partial s}\\ &\frac{U^2}{R}-fU = -\frac{\partial \Phi}{\partial n} \end{cases} $$