<style> .text-center{ text-align: "center"; } </style> # <p class="text-center">2024/03/04</p> ## <p class="text-center">Review</p> ### Momentum equation 1. vectorial form $$ \begin{aligned} \frac{d\vec{V}}{dt} = -\frac{\nabla p}{\rho}+\vec{g^*}+\nu \nabla^2 \vec{v} - 2\vec{\Omega}\times\vec{v}+\Omega^2\vec{R} \end{aligned} $$ 2. Component equation $$ \begin{aligned} \frac{du}{dt} &= -\frac{1}{\rho}\frac{\partial p}{\partial x}+\nu\nabla^2 u+2\Omega v \sin\phi-2\Omega w \cos\phi+\frac{uv}{a}\tan\phi-\frac{uw}{a}\\ \frac{dv}{dt} &= -\frac{1}{\rho}\frac{\partial p}{\partial y}+\nu\nabla^2 v-2\Omega u \sin \phi-\frac{u^2}{a}\sin\phi\\ \frac{dw}{dt} &= -\frac{1}{\rho}\frac{\partial p}{\partial z}-g +\nu\nabla^2 w+2\Omega \cos \phi + \frac{u^2}{a} \end{aligned} $$ Generally, by scale analysis, the horizontal velocity is much larger than vertical velocity. With this sense, the Coriolis force can be simplified as: $$ \begin{aligned} (\frac{du}{dt})_{Co} &= 2\Omega v sin\phi \\ (\frac{dv}{dt})_{Co} &= -2\Omega u sin\phi \end{aligned} $$ ### Angular velocity vector ![image](https://hackmd.io/_uploads/SyV6-8m6a.png) This figure shows the components of the angular velocity likes below: $$ \begin{aligned} \vec{\Omega} = \Omega<0, cos\phi, sin\phi> \end{aligned} $$ With the vectorial form of Coriolis force, $-2\vec{\Omega}\times\vec{v}$, which components can be written as: $$ \begin{aligned} -2\vec{\Omega}\times\vec{v} = -2\Omega |\begin{vmatrix} \hat{i} & \hat{j} & \hat{k}\\ 0 & cos\phi & sin\phi\\ u & v & w \end{vmatrix}| = -2\Omega<wcos\phi-vsin\phi, usin\phi, -ucos\phi> \end{aligned} $$ If only consider horizontal component of velocity and Coriolis force, the components can be simplified as: $$ \begin{aligned} \frac{du}{dt} &= fv \\ \frac{dv}{dt} &= -fu\\ \end{aligned} \Rightarrow \frac{d\vec{V_h}}{dt} = -f\hat{k}\times\vec{V_h} $$ ## <p class="text-center">Derivation of Vectorial form of Momentum equation</p> Suppose following equation is known that: $$ \frac{D_a \vec{A}}{Dt} = \frac{D\vec{A}}{Dt}+\vec{\Omega}\times\vec{A} $$ where $\vec{A}$ is an arbitrary property of atmosphere. Consider position vector $\vec{r}$: $$ \frac{D_a \vec{r}}{Dt} = \frac{D \vec{r}}{Dt}+\vec{\Omega}\times\vec{r} $$ $$ \Rightarrow \vec{v_a} = \vec{v}+\vec{\Omega}\times\vec{r} $$ Then consider the absolute velocity vector: $$ \begin{aligned} \frac{D_a \vec{v_a}}{Dt} &= \frac{D \vec{v_a}}{Dt}+\vec{\Omega}\times\vec{v_a} \\ \Rightarrow \frac{D_a \vec{v_a}}{Dt} &= \frac{D (\vec{v}+\vec{\Omega}\times\vec{r})}{Dt}+\vec{\Omega}\times(\vec{v}+\vec{\Omega}\times\vec{r}) \\ \Rightarrow \frac{D_a \vec{v_a}}{Dt} &= \frac{D \vec{v}}{Dt} + 2\cdot\vec{\Omega}\times\vec{v} + \Omega^2\vec{r} \end{aligned} $$ In this vectorial equation, the term $\frac{D_a \vec{v_a}}{Dt}$ is absolute acceleration in inertial frame, which follows the second law of Newton motion, including PGF, GF, VF. And the $\frac{D \vec{v}}{Dt}$ is acceleration in rotating frame, which is we need to obtain. Therefore, there is: $$ \frac{D\vec{v}}{Dt} = -\frac{\nabla p}{\rho}+\vec{g}+\nu \nabla^2 \vec{v}-2\vec{\Omega}\times \vec{v} $$ ## <p class="text-center">Component Equation in spherical coordinate</p> ![image](https://hackmd.io/_uploads/HJpTDDmT6.png) (Sor for the lazy QAQ) ## <p class="text-center">Hydrostatic and Hyposmetric Equation</p> ### Hydrostatic equation Vertical momentum equation, ignoring VF, Coriolis force and curvature terms: $$ \frac{Dw}{Dt} = -\frac{1}{\rho}\frac{\partial p}{\partial z}+\vec{g} $$ When the vertical acceleration is 0, then the condition is hydrostatic atmosphere. And the vertical momentum equation can be rewritten as: $$ \begin{aligned} 0 &= -\frac{1}{\rho}\frac{\partial p}{\partial z}-g \end{aligned} $$ $$ \Rightarrow \frac{\partial p}{\partial z} = -\rho g $$ The equation is hydrostatic equation. ### Hyposmetric Equation By hydrostatic equation: $$ dp = -\rho g dz $$ By ideal gas law: $$ \begin{aligned} dp &= -\frac{p}{RT}g dz \\ \Rightarrow -\frac{RT}{p} dp &= d\Phi \end{aligned} $$ I