# Handout Fill In (Introduction of Computer Science) ##### [Back to Introduction of Computer Science](https://reurl.cc/XXeYaE) ###### tags: `NTNU` `CSIE` `必修` `Introduction of Computer Sciencce` 此頁所有登入者皆可更改 以下標號對應講義右下角頁碼 ## Ch1 Fill In (All) Ch1-14 Addition and subtraction Ch1-15 multiplication and division as well as addition and subtraction Ch1-16 punched card Ch1-17 polynomial[^polynomial] Ch1-19 tabulating[^tabulating],tally[^tally]and sort data stored on punched cards Ch1-24 input data Ch1-28 linear equations Ch1-29 general-purpose electronic computer (程式為外接式,可換) Ch1-32 memory,binary patterns(模式) Ch1-33 EDVAC Ch1-38 Central Processing Ch1-41 十八個月 Ch1-47 Algorithms,Operating Systems [^polynomial]: polynomial:多項式 [^tabulating]: tabulating:製表 [^tally]: tally:匯集 ## Ch2 Fill In (All) Ch2-1 **印度人**發明阿拉伯數字 Ch2-2 (2A)~16~ = **(52)~8~** = (42)~10~, **non-positional** systems Ch2-3 **base**[^base]=radix Ch2-4 b=**10** , **powers** of 10 Ch2-5 **minus** Ch2-6 **integral** part[^integral_part]+fraction part[^Fraction_part] Ch2-7 **Roman** Ch2-8 bits=binary **digits**,**base**,**decimal** Ch2-10 **fractional** part, **5.75** Ch2-11 b=**8** Ch2-13 b=**16** Ch2-15 **decimal**[^decimal] point Ch2-17 Divide X continuously by **b** Ch2-18 Q:Quotients[^quotient] R:**Remainders**[^remainder], **0** Ch2-19 quotient is **0**? Quotient becomes new **source** Ch2-20 **(7E)**~16~ Ch2-21 convert the **Fractional** part to binary Ch2-22 Multiply source by **base** to get a result Fraction part of result becomes new **source** Fraction part is zero or **destination** digits [^destination_digits]are enough? Ch2-23 **rounded** Ch2-25 **16** Ch2-26 **E** Ch2-27 **6** Ch2-28 (**4E2**)~16~ Ch2-29 **E** Ch2-31 **X** [^base]:base:底數 [^integral_part]:integral_part:整數 [^Fraction_part]:fraction_part:小數 [^decimal]:decimal:十進位 [^quotient]:quotient:商 [^remainder]:remainder:餘 [^destination_digits]:destination_digits:指定的小數位數 ## Ch3 Fill In (部分有缺) Ch3-3 **byte** Ch3-4 **11111000** Ch3-6 **65535** Ch3-11 **10000000** Ch3-12 **51F** Ch3-13 **00000111** Ch3-14 **1111111011111101** Ch3-15 **twice** Ch3-16 **2^n-1^-1** Ch3-17 **76544** Ch3-18 **twice** Ch3-20 **32767** Ch3-22 **01100110** Ch3-26 The sign is negative, so S = **1** Ch3-27 The number is **-2104387.8** Ch3-28 **lowercase** Ch3-29 **16** Ch3-30 **$2^7$** Ch3-31 **parity** check Ch3-32 **$8$** Ch3-33 **2** Ch3-34 **127** Ch3-37 **1000** Ch3-39 **256** Ch3-40 **65536** Ch3-41 **1677** Ch3-46 Postscript font以 **4** 個點表示一個曲線 ## Ch4 Fill in (All) ch4-2 **unary** ch4-4 **01100111** ch4-5 both inputs are **1** ch4-7 both inputs are **0** ch4-9 both inputs are the **same** ch4-10 奇數個1,結果為**1**  偶數個1,結果為**0** ch4-13 Result **11111110**  ch4-14 Result **01011110** ch4-17 a << 2 = **10010100** ch4-20 b >> 1 = **-5**(arithmetic shift的結果不同於整數除法) ch4-24 **00000111** ch4-27 **00100111** ch4-30 6 + **127** <!----> ## Ch5 ### 10/17 Ch5-2 每秒**30億次**運算 Ch5-5 **Instruction registers** Ch5-6 A simplified cycle can consist of three steps: fetch,**decode**, Ch5-9 Tera = 2^40^ Ch5-10 nm = 奈米 Ch5-11 RAM:Random **Access** Memory DRAM:**Dynamic** Ramdom Acess Memory Ch5-12 ROM:**Read** Only Memory ### 10/21 Ch5-15 記得把第三項"而蓄意省略不重要的 20%"中的"20%"改為**80%** ### 10/28 Ch5-39 3.**Excute**