--- title: LA Ch.1 --- # Linear Algebra <br> Ch.1 Matrices, Vectors and Systems of Linear Equations NTNU 線性代數 ##### [Back to Note Overview](https://reurl.cc/XXeYaE) ##### [Back to Elementary Linear Algebra](https://hackmd.io/@NTNUCSIE112/SytJZchNw) {%hackmd @NTNUCSIE112/LA_mark %} ###### tags: `NTNU` `CSIE` `必修` `Linear Algebra` ## PPT <iframe src="https://drive.google.com/file/d/1weLVDvjgFfZs7O2DhqGxCHdBFWtbFsnx/preview" width="640" height="480"></iframe> <!-- 這行到底是哪來的 --> $R^{m + n}$ : R, m, n for real numbers, number of rows, number of columns, respectively ## Outline - Gaussian elimination 高斯消去 - Generating sets and linear independence  - Information about the **existence(存在性)** and **uniqueness(獨立性)** of solutions of a system of linear equations ## 1.1 Matrices and Vectors ### Matrices #### Definition - 矩陣:是由一些係數組合排列而成的長方形陣列 - $M_{m\times n}$: $m\times n$ 大小的矩陣 - The scalar(純量) in the $i-th$ row and $j-th$ column is called the $(i,j)\text{ - entry}$ 第i列(直的)第j行(橫的) - $A^T$:$(i,j)\text{ - entry}$ is the $(j,i)\text{ - entry}$ of $A$ - If $A,B \in M_{m\times n}$ , then $A=B$($A$ and $B$ are equal)$\leftrightarrow a_{ij}=b_{ij} ,\forall i=1,...,m , j=1,...,n$ #### submatrix(子矩陣) A submatrix is obtained by deleting from a matrix entire rows and /or columns. ![](https://i.imgur.com/SabloRC.png) ### Vector #### Definition - vector:泛指下列兩種 vector - row vector:只有一個 row 的 matrix. e.g. \begin{bmatrix}1&2&3&4\end{bmatrix} - column vector:只有一個 column 的 matrix e.g. \begin{bmatrix}1\\2\\3\\4\end{bmatrix} or $\begin{bmatrix}1&2&3&4\end{bmatrix}^T$ - components:vector 裡面的元素 - $R^n$:利用 n 個實數來構成一個向量($R^n = M_{n\times 1}$)<!-- the set of all column vector with n components --> - arithmetic operation - vector addition - scalar multiplication ## 1.2 Linear combinations, Matrix-vector products, and special matrices ### Linear combinations #### Definition - Linear combinations: $c_1u_1 + c_2u_2 + ... +c_ku_k$ (vectors $u_1, u_2, ... , u_k$, scalars $c_1, c_2, ... , c_k$) - Standard vectors of $R^n$: $$ e_1 = \begin{bmatrix} 1 \\ 0 \\ \vdots \\ 0 \end{bmatrix}, e_2 = \begin{bmatrix} 0 \\ 1 \\ \vdots \\ 0 \end{bmatrix}, \dots, e_n = \begin{bmatrix} 0 \\ 0 \\ \vdots \\ 1 \end{bmatrix}$$$$\rightarrow R^n \text{可以被 standard vectors 唯一表示}$$ > 如果向量 $u, v$ 是不平行的 $R^2$, 那麼任何 $R^2$ 是 $u,v$ 的一個 linear combination. **unique linear combination** ![](https://i.imgur.com/q6Xpzvd.png) ### Matrix-vector Product #### Definition - Let $A = Metrix_{m\times n}$ and $\text{v} = Vector_{n\times 1} \implies$ Matrix-vector Product: $A\text{v} = v_1a_1 + v_2a_2 + \dots + v_na_n$ ### Special Matrixs - **Identity Matrix** ( 單位矩陣 ) [ $I_n \in M_{n\times n}$ ] $$\text{E.g. }I_3 = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$ - **Stochastic Matrix** [ $A \in M_{n\times n}$ 且每個 column 的總和是 unity ] $$ \text{E.g.1 probability matrix: }A = \begin{bmatrix} 0.85 & 0.03 \\ 0.15 & 0.97 \end{bmatrix}\\ \\ \text{E.g.2 rotation matrix: } A_{\theta} = \begin{bmatrix} cos\theta & -sin\theta \\ sin\theta & cos\theta \end{bmatrix}$$ ## 1.3 Systems of Linear Equations ### Elementary row operations - **Two systems of linear equations** that have exactly the **same solution set** are called ==等價 (equivalent)== - A system of linear equations can be expressed as the matrix equation $Ax = b$ - $A$ is called the 係數矩陣 (coefficients matrix or the matrix of coefficients) - $x$ is called the 變數矩陣 (variable matrix) - The matrix (of size $m\times (n+1)$) is called 增廣矩陣(augmented matrix). $\begin{bmatrix} A|b\end{bmatrix} = \begin{bmatrix}a_{11} & a_{12} & \cdots & a_{1n} & b_1 \\a_{21} & a_{22} & \cdots & a_{2n} & b_2 \\\vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} & b_m\end{bmatrix}$ - A system of linear equations that has one or more solutions is called **consistent 有解**; otherwise, it is called **inconsistent 無解**. #### Define Any one of the following three operations performed on a matrix is called an elementary row operation: 1. Interchange: 交換兩個 matix 的 row 2. Scaling: 對某些 row 的元素乘上相同係數(非零) 3. Row addition: 將一條 row 乘上某係數後加到另一條 row 上 ### Reduced Row Echelon Form 簡化成階梯形矩陣 簡單來說就是把它變成這樣 <!-- 下面這種好像不用加$$ 加了反而會爛掉 --> \begin{bmatrix} 1 & * & 0 & 0 & * \\ 0 & 0 & 1 & 0 & * \\ 0 & 0 & 0 & 1 & * \\ 0 & 0 & 0 & 0 & 0 \\ \end{bmatrix} ## 1.4 Gaussian Elimination 高斯消除 ### Definition 1. pivot column: the leftmost nonzero column 2. pivot position: the 1st row of pivot column #### The rank and nullity of a matrix - Rank: The rank of an $m\times n$ matrix $A$, denoted by rank $A$, is defined to be **the number of nonzero rows** in the **reduced row echelon form** of $A$. - The rank of a matrix equals the number of pivot columns in the matrix - rank$A$ = the number of basic variables / the number of "useful" equation - Nullity: The nullity of $A$ , denoted by nullity $A$, is defined to be $n$-rank $A$. - The nullity of a matrix equals the number of non-pivot columns in the matrix.($n$ - rank$A$) - Nullity$A$ = the number of free variables @Eoleedi 求翻譯 ## 1.5 The language of set - Q: Is $R^2$ a subset of $R^3$? - Ans: **No** ![](https://i.imgur.com/JyFynK9.png) ## 1.6 The span of a set of vectors ### Example > Let $S_1 = \{ \begin{bmatrix} 1 \\ -1 \\ \end{bmatrix} \}$, what is Span $S_1$? > >$\rightarrow$ Span $S_1$ = \{$c_1\begin{bmatrix} 1 \\ -1 \\ \end{bmatrix} | c_1 \in R$\} ### Theorem 1.6 The following statements about an $m \times n$ matrix $A$ are equivalent: (a) The span of the columns of $A$ is $R^m$ (b) The equation $Ax = b$ has at least one solution(that is, $Ax = b$ is consistent) for each $b$ in $R^m$ (c\) The rank of $A$ is $m$, the number of rows of $A$ (d) The reduced row echelon form of $A$ has no zero rows (e) There is a pivot position in each row of $A$ > Proof. (See in p.70-71) (a) and (b) are equivalent(by Theorem 1.5) (c\), (d), (e) are equivalent ### Theorem 1.7 扣除掉 vector $v$ 之後 Span $\{u_1, u_2, u_3, \dots, u_k, v\}$ = Span $\{u_1, u_2, u_3, \dots, u_k \}$ #### Proof that - $v \in SpanS$ - $v \notin SpanS$ ## 1.7 Linear dependence and linear independence(L.D. & L.I.) <!-- This is the end of the note --> *[coefficients]:係數 *[constant term]:常數項