--- title: 離散 part2 --- {%hackmd @NTNUCSIE112/DM_card %} # Modular arithmetic 模運算 Ch.4 Number Theory and Cryptography Reading assigned: 4.1, 4.3, 4.4, 4.6 ### 基礎模運算 #### 【Defination】 定義:給兩個正整數 $a,b$ 和一個正整數 $m$ ,當 $(a-b)|m$時,我們說 $a$ 和 $b$ 對模 $m$ 同餘 ( $a$ is congruent to $b$ modulo $m$ ) 記成:$a\equiv b(mod\ m)$($\rightarrow$ $a$ 同餘 $b$ 模 $m$) #### 【Proposition】 命題:設 $a,b\in Z$ 和 $m\in N$ , $a\equiv b(mod\ m),c\equiv d(mod\ m)\implies(a+c)\equiv(b+d)(mod\ m)$ 證明: $(a-b)|m,(c-d)|m$ $\implies (a-b)\equiv k_1m ,(c-d)\equiv k_2m ,k_1,k_2 \in Z$ $\implies(a-b)+(c-d)=(k_1+k_2)m$ $\implies m|(a+c)-(b+d)$ #### 【Proposition】 命題:設 $a,b\in Z$ 和 $m\in N$, $a\equiv b(mod\ m),c\equiv d(mod\ m)\implies ac \equiv bd(mod\ m)$ 證明: $\begin{aligned} (a-b)\equiv k_1m &\rightarrow a = b + k_1m\\ (c-d)\equiv k_2m &\rightarrow c = d + k_2m\\ &\rightarrow ac = bd + m \cdot (k_1d + k_2b + k_1k_2m)\\ &\rightarrow m | (ac-bd) \end{aligned}$ $ac \equiv bd(mod\ m)$ 得證 ### Arithmetic Modulo $m$ ### RSA cryptography system Ronald **R**ivet | Adi **S**hamir | Leonard **A**dleman 過程 1. 選兩個很大的質數 $p$ 和 $q$,設$n=p\times q,r=(p-1)\times (q-1)$ 2. 適當得選擇一個數字 $e$ (加密金鑰 the encrytion) 3. 找一個數字 $d$ (解密金鑰 the decryption key), 使得 $d\cdot e \equiv 1(\mod r)$ 然後,Bob 傳送 $(n,e)$ 給 Alice $c\equiv m^e(\mod n)$ $\xrightarrow{c}$ $c^d\equiv m(\mod n)$ ( $m$ 是要傳送的訊息) 【Q1】 給定 $r$ 跟 $e$ 使得 $\gcd(r,e)=1$,如何找到 $d$ 滿足 $d\cdot e \equiv 1(\mod r)$? $d$是否永遠存在? 【Q2】 For any $m<n$, why $(m^e)^d \equiv m (\mod n)$ ? - If $\gcd(m, p) = 1$ and $\gcd(m,q) = 1$, then ? - If $\gcd(m, p) \neq 1$ or $\gcd(m,q) \neq 1$, then ? 【Q3】 RSA 是安全的嗎? $\rightarrow$ 如果我們有 $d$ ,則我們可以知道祕密 (需要 $d$ ) $\rightarrow$ 我們可以解 $d\cdot e\equiv 1(\mod r)$ 得到 $d$(需要 $r$ ) $\rightarrow$ 如果我們知道 $p$ 和 $q$ ,則我們知道 $r$ (需要質因數分解 $n$ ) RSA加密的安全性建立在質因數分解之困難程度 ![](https://i.imgur.com/QOzXV1N.jpg) ### 【Theorem】Bezout's identity 貝祖定理 For $a,b \in \mathbb{N}$, 如果 $gcd(a,b)=d$, 那麼 $\exists x,y \in Z$ 滿足 $ax+by=d$ 證明: (Well-ordering axiom: every nonempty subset of $\mathbb{N}$ has a smallest element. 任意取一堆正整數,裡面必有最小值) - Let $S=\{ax+by|x,y\in \mathbb{Z},ax+by\gt 0\}$ - $S$ : nonempty $\xrightarrow[w.o. ](Creating note...){}$ <!-- 上面有缺 --> $d^*|a,\ d^*|b,\ \forall c,\ c|a \land c|b \implies c|d^*$ $d^* = ax^* + by^*$ $\begin{aligned} \text{let } &a = d^* \cdot k_1+r_1(r_1 = r_2 = 0)\\ &b = d^* \cdot k_2+r_2 \end{aligned}$ $d^*|a,\ (a=d^*\cdot k_1+r_1,\ 0 \leq r_1 \lt d^*)$ $d = ax^* + by^*$ $\begin{aligned} d^* &= ax^* by^* &= ck_1x^* + ck_2y^*\\ \end{aligned}$ $d^*|a,\ (a=d^*\cdot k_1 + r_1 )$ $d=ax^*+by^*$ $\begin{aligned} ax^* &= \end{aligned}$ <!-- 這邊還有缺 --> #### 【Question】 Q. We know that there "exist" $x$ and $y$ such that $ax + by = d$, where $d = \gcd(a,b)$, but how do we find $x$ and $y$ ? :::spoiler solution 已知存在 $x,y$ 使得 $ax+by=d$,$d=\gcd(a,b)$,我們要如何尋找 $x,y$ ? e.g. a = 18 , b = 32 ![](https://i.imgur.com/zHMOxTV.png) $\ 32 = 1*18+14 \rightarrow 14 = 32-1*18$ $\ 18 = 1*14+4 \rightarrow 4 = 18-1*14$ $\begin{aligned} 14 &= 3*4+2 \rightarrow 2 = 14-3*4\\ &= 14-3*(18-1*14)\\ &= -3*18+4*14\\ &= -3*18 + 4*(32-1*18)\\ &= 4*32-7*18 \end{aligned}$ ::: ### 【Theorem】4.4.5 Fermat's Little Theorem 費馬小定理 Let $p$ be a prime. Then $\forall a \in \mathbb{Z}, \gcd(a, p)= 1 \implies a^{p-1} \equiv 1 (\mod p)$. (Proposed by Fermat in 1636, formally proved by Euler in 1736) :::spoiler e.g. $\begin{aligned} &p=7,a=3 \\ &\gcd(7,3)=1\\ &3^{7-1} \equiv 1(\mod 7) \end{aligned}$ | $(\mod7)$ | $3^1$ | $3^2$ | $3^3$ | $3^4$ | $3^5$ | $3^6$ | | :---------: | :-----: | :-----: | :-----: | :-----: | :-----: | :-----: | | | 3 | 2 | 6 | 4 | 5 | 1 | ::: :::spoiler Proof. consider $\{1,2,3,...,p-1\}$ $a \cdot 1,\ a\cdot 2,\ a\cdot 3,\ ...,\ a\cdot (p-1)$ $\forall \ i \neq j, a\cdot i \not\equiv a\cdot j \ (\mod p)$ $(\text{o.w.}\ \ p|(a\cdot i - a \cdot j)) \implies p|a(i-j) \implies p|(i-j) )$ $\begin{aligned} (1\cdot a)(2\cdot a)\cdots((p-1)a)&\equiv 1\cdot 2 \cdot \cdots \cdot(p-1)(\mod p)\\ a^{p-1}(1\cdot2\cdot\dots\cdot(p-1))&\equiv 1\cdot2\cdot\dots\cdot(p-1)(\mod p)\\ \implies a^{p-1}&\equiv 1(\mod p)\end{aligned}$ ::: ### 【Note】 To compute $d$ , we apply Euclidean algorithm, and then backward substitution. We can also use Fermat's little theorem since $gcd(e,r) \equiv 1 \implies d = e^{r-2}$ ### 【Problem】 Solving congruence equations. :::spoiler e.g. ::: ...... #### 【Q1】Is there such a solution?(existence) ##### simplified system $\begin{aligned} x&\equiv a(\mod m_1)\\ x&\equiv a(\mod m_2)\\ &\vdots\\ x&\equiv a(\mod m_n)\\ \end{aligned}$ $x = a + (m_1, m_2, \cdots, m_n)$ #### 【Q2】 ### 【Popostition】 Let $x_1$ and $x_2$ be two solutions of the system: $\begin{aligned} x&\equiv a_1(\mod m_1)\\ x&\equiv a_2(\mod m_2)\\ &\vdots\\ x&\equiv a_n(\mod m_n)\\ \end{aligned}$ Then $(x_1-x_2)|\text{lcm}(m_1,m_2,\dots,m_n)$ ### 【Theorem】Chinese remainder theorem 中國餘數定理 Let $m_1, m_2, \cdots, m_n$ be pairwise relatively prime positive integer greater than 1, and $a_1, a_2, \cdots, a_n$ arbitrary integers. Then the system $\begin{aligned} x&\equiv a_1(\mod m_1)\\ x&\equiv a_2(\mod m_2)\\ &\vdots\\ x&\equiv a_n(\mod m_n)\\ \end{aligned}$ has a unique solution modulo $m_1 \cdot m_2 \cdot \dots \cdot m_n$ <!-- This is the end of the note. -->