# ๐ŸŽฏ Bonus Assignment โ€” Portfolio Design Exercise You have just learned the three key ingredients for **portfolio construction**: 1. **Expected Return** 2. **Standard Deviation (Risk)** 3. **Correlation** between assets Now, you will use this information to design a simple **three-asset portfolio**. --- ## ๐Ÿ“Š Available Assets | Asset | Expected Return (Yearly) | Std. Deviation | Correlation with US Equity | Correlation with US Bond | Correlation with Global Equity | |:------|:-------------------------:|:---------------:|:---------------------------:|:-------------------------:|:-------------------------------:| | **US Equity Index** | 8% | 20% | โ€” | -0.4 | 0.7 | | **US Bond Index** | 4% | 10% | -0.4 | โ€” | -0.6 | | **Global Equity Index** | 10% | 30% | 0.7 | -0.6 | โ€” | --- ## ๐Ÿงฎ Instructions Please follow the three steps below to design your portfolio. (You may answer **in English or Chinese**.) ### Step 1. Choose your target expected return Decide on a yearly expected return goal for your portfolio. For example: > I aim for an expected return of **6.5%**. --- ### Step 2. Choose your allocation Decide your percentage weights among the three assets (the weights must sum to 100%). Example: | Asset | Weight | |:------|:------:| | US Equity Index | 25% | | US Bond Index | 50% | | Global Equity Index | 25% | Expected portfolio return = $$ 0.25 \times 8\% + 0.50 \times 4\% + 0.25 \times 10\% = 6.5\% $$ --- ### Step 3. Explain your reasoning (3โ€“5 sentences) Briefly describe **why** you chose this allocation. You may discuss: - Riskโ€“return tradeoff - Diversification - Correlation between assets - Your tolerance for volatility --- ## ๐Ÿ“ Submission - Please prepare a **short written answer (half to one page)**. - Export your answer as a **PDF file**. - **Upload your PDF to TronClass** under this assignment. --- ## โœ… Your PDF should include 1. Your **target expected return** 2. Your **chosen weights** (sum to 100%) 3. Your **short explanation** --- โœจ *This exercise helps you think about how to balance return, risk, and diversification โ€” the foundation of modern portfolio theory.*