Toward Subgraph Guided Knowledge Graph Question Generation with Graph Neural Networks
KG
@article{chen2020toward,
title={Toward subgraph guided knowledge graph question generation with graph neural networks},
author={Chen, Yu and Wu, Lingfei and Zaki, Mohammed J},
journal={arXiv preprint arXiv:2004.06015},
year={2020}
}
過去使用KG進行問題生成任務時,通常只會取出資料與關係的三元組合,並不能完整利用KG中豐富的資訊,本篇論文中作者基於Graph Neural Networks提出了Bidirectional Gated Graph Neural Network(BiGGNN) ,將KG中的node及edge編碼成向量,使得每個node都包含了周圍其他node的資訊,並對答案的node進行標註,隨後透過RNN進行問句生成,生成過程中RNN會決定生成新文字或直接複製某個node的資訊放進問題。