--- tags: 大四 --- # 量子資訊科學導論 Autumn 2021 <style> h1, h2, h3, h4, h5, h6{ animation-name: bling; animation-duration: 6s; animation-iteration-count: infinite; } @keyframes bling{ 0% {color: #ff791b;} /*密柑色:高海千歌*/ 11% {color: #ee55b7;} /*粉色:黒澤ルビィ*/ 22% {color: #f43232;} /*紅色:黒澤ダイヤ*/ 33% {color: #cfba0f;} /*黃色:花丸*/ 44% {color: #ff7777;} /*櫻色:桜内梨子*/ 55% {color: #00d29e;} /*綠色:松浦果南*/ 66% {color: #2aa4db;} /*水藍色:渡辺曜*/ 77% {color: #a530e0;} /*紫色:小原鞠莉*/ 88% {color: #aeaeae;} /*灰色:津島善子*/ 100% {color: #ff791b;} } p, span,table,svg,li{ /*animation-name: shake; */ animation-duration: 60s; animation-iteration-count: infinite; } @keyframes shake{ 0% {transform: translate(0px, 0px) rotate(deg);} 35% {transform: translate(0px, 0px) rotate(130deg);} 50% {transform: translate(0px, 0px) rotate(180deg);} 65% {transform: translate(0px, 0px) rotate(210deg);} 100% {transform: translate(0px, 0px) rotate(360deg);} } .センター { display: block; margin: 0 auto; width: 50%; } </style> [![](https://img.shields.io/badge/dynamic/json?style=flat-square&color=green&label=%E7%B8%BD%E8%A7%80%E7%9C%8B%E6%95%B8&query=%24.viewcount&suffix=%E4%BA%BA%E6%AC%A1&url=https%3A%2F%2Fhackmd.io%2FmNaJo81zQu6Fv0dzLtEZIA%2Finfo)](https://hackmd.io/mNaJo81zQu6Fv0dzLtEZIA/info) [![](https://img.shields.io/badge/HackMD-blue?logo=markdown&style=flat-square)](https://hackmd.io/@NCHU-CSE-111/r1HDsErIt) <!-- ![](https://i.imgur.com/BicE09R.jpg) ![](https://i.imgur.com/FK0n9Ml.png) ![](https://i.imgur.com/00vgetQ.png) --> ![](https://i.imgur.com/aHzBlRb.jpg) ![](https://i.imgur.com/KF3xUKT.png) [TOC] ## Outline + Historical and Philosophical Review of Quantum Mechanics + Introduction / Overview on Quantum Computation and Information Processing + Fundamentals of Quantum Information Science + Quantum Bit (Qubit) and Basic Principles of Quantum Mechanics + Quantum No-Cloning Theorem • Quantum Gates and Quantum Circuits + Quantum Entanglement and its Applications + Quantum Teleportation + Quantum Dense Coding + Quantum Cryptography + Quantum Key Distribution + Group presentation ## Grading <!--![](https://i.imgur.com/xvHKMIL.png)--> * Usual grades: 40% * 包含隨堂作業、小考、課堂、課後作業 * Midterm Exam: 20% * Final Exam: 20% * Class Report: 20% <!-- ## 摩爾定律 摩爾數 = 質量 / 分子量 ![](https://i.imgur.com/nkEeKPi.png)--> ## Overview + {湯姆森|Thomson}: 首先發現量子現象,電子繞射 + {普朗克|Planck}: $E=h\nu$, 能量是階梯式不連續分佈 + {愛因斯坦|Einstein}: {光電效應|Photoelectric Effect},由普朗克的量子化假說啟發 + 1905年 物理{奇跡年|きせきねん} + 1913年 {波爾|Bohr}提出{氫原子模型|Bohr model} + 1923年 {德布羅伊|de Broglie}提出{物質波|Matter wave},即粒子可以有波的特性,反之亦同 + 1925年 {海森堡|Heisenberg}、{玻恩|Born}, {約爾當|P. Jordan} 發表{矩陣力學|Matrix mechanics} + 1925年 {薛丁格|Schrödinger} + 薛丁格方程式 $i\hbar\frac{\partial}{\partial t}\Psi= H\Psi$ + ~~[薛丁格的內褲](https://wiki.komica.org/薛丁格的內褲):穿裙子的女角,在裙子未掀起之前,無法確定她是否有穿內褲。~~ + <img src="https://imgur.com/nGDs51i.png" style="width: 50%"> + 1935 Locality in Einstein-Podolsky-Rosen paradox: {不思議|ふしぎ}な{距離|きょり} + 1964 [John Bell](https://www.youtube.com/watch?v=vI6QIoisuq0)→Bell's theorem + 1969 CHSH inequality ![](https://i.imgur.com/frII8Qz.png) ### 哥本哈根詮釋 + 互補理論 + 測不準原理 + 波爾法則 ![](https://i.imgur.com/032CCUi.png) + Locality -> 一地的狀態不應該影響到另一地 + Probability -> 疊加態 + NonLocality -> 糾纏態 ![](https://i.imgur.com/ZCiSBK3.jpg =400x) ~~在還沒觀察可愛的妹子褲底有沒有隆起之前,妹子是屬於男孩子與女孩子的疊加態~~ <!--剛剛那張放小一點--> <!--![](https://i.imgur.com/XYpUqeK.png)--> <!-- ![](https://i.imgur.com/0APR6yX.png) --> > 量子運算並非萬能,只有在**部分**情況下可以加速 > ex: shor algorithm 破解 RSA 加密 > > 一個完整功能的量子電腦可能代表RSA和其他的加密協定的結束(原計算條件改變) > → 利用量子加密 > > {後量子密碼學|Post-quantum cryptography}:在傳統電腦上想辦法發明一個演算法不讓量子電腦能破解(無條件安全) <!-- $$ \text{亮紋間距 }\Delta y = \frac{L\lambda}{d} $$ $$ \text{物質波波長 }\lambda = \frac{h}{p} $$ --> ## Qubits ![](https://i.imgur.com/iVAlHVl.png =400x) A single quantum bit is a linear combination of a two level quantum system: {"zero", "one"}. $$ |\psi\rangle = \alpha |0\rangle +\beta|1\rangle\\ \text{where } (\alpha, \beta)\in C^2 and\ \alpha^2 + \beta^2 = 1 $$ ### inner product $$ \langle abc||def\rangle=\langle abc|def\rangle=\begin{bmatrix} a & b &c \end{bmatrix}\begin{bmatrix} d \\ e \\ f \end{bmatrix} = ad+be+cf $$ ### outer product $$ |def\rangle \langle abc | = |def\times abc|=\begin{bmatrix}d \\ e \\ f\end{bmatrix}\begin{bmatrix}a & b &c\end{bmatrix} = \begin{bmatrix}da & db & dc\\ea & eb & ec\\ fa & fb & fc\end{bmatrix} $$ ### Z basis $$ |0\rangle=\begin{bmatrix} 1 \\ 0 \end{bmatrix} $$ $$ |1\rangle=\begin{bmatrix} 0 \\ 1 \end{bmatrix} $$ ### X basis $$ |+\rangle=\frac{1}{\sqrt{2}}(|0\rangle+|1\rangle)=\begin{bmatrix}\frac{1}{\sqrt{2}}\\\frac{1}{\sqrt{2}}\end{bmatrix}=|↗\rangle $$ $$ |-\rangle=\frac{1}{\sqrt{2}}(|0\rangle-|1\rangle)=\begin{bmatrix}\frac{1}{\sqrt{2}}\\\frac{-1}{\sqrt{2}}\end{bmatrix}=|↘\rangle $$ $$ |0\rangle=\begin{bmatrix}1\\0\end{bmatrix}= \frac{1}{\sqrt{2}} \begin{bmatrix} \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} \end{bmatrix} + \frac{1}{\sqrt{2}} \begin{bmatrix} \frac{1}{\sqrt{2}} \\ \frac{-1}{\sqrt{2}} \end{bmatrix}=\frac{1}{\sqrt{2}}|+\rangle+\frac{1}{\sqrt{2}}|-\rangle $$ ### Y basis // TODO ### Bell basis (量子糾纏態) $$ |\phi\rangle^+=\frac{|00\rangle+|11\rangle}{\sqrt{2}}=\frac{1}{\sqrt2}(|00\rangle+|11\rangle) $$ $$ |\phi\rangle^-=\frac{|00\rangle-|11\rangle}{\sqrt{2}}=\frac{1}{\sqrt2}(|00\rangle-|11\rangle) $$ $$ |\psi\rangle^+=\frac{|01\rangle+|10\rangle}{\sqrt{2}}=\frac{1}{\sqrt2}(|01\rangle+|10\rangle) $$ $$ |\psi\rangle^-=\frac{|01\rangle-|10\rangle}{\sqrt{2}}=\frac{1}{\sqrt2}(|01\rangle-|10\rangle) $$ 口訣:$\phi$上下,$\psi$中間 ### GHZ Basis ### Multiples qubits How about 2 Qubits? Use `Tensor product` (張量積) $A\otimes B$ $A\otimes B$ is not always equal to $B\otimes A$ $$ |00\rangle=|0\rangle\otimes|0\rangle=\begin{bmatrix}1\\0\end{bmatrix}\otimes\begin{bmatrix}1\\0\end{bmatrix}=\begin{bmatrix}1\begin{bmatrix}1\\0\end{bmatrix}\\0\begin{bmatrix}1\\0\end{bmatrix}\end{bmatrix}=\begin{bmatrix}1\\0\\0\\0\end{bmatrix} $$ $$ |01\rangle=|0\rangle\otimes|1\rangle=\begin{bmatrix}1\\0\end{bmatrix}\otimes\begin{bmatrix}0\\1\end{bmatrix}=\begin{bmatrix}1\begin{bmatrix}0\\1\end{bmatrix}\\0\begin{bmatrix}0\\1\end{bmatrix}\end{bmatrix}=\begin{bmatrix}0\\1\\0\\0\end{bmatrix} $$ $$ |10\rangle=|1\rangle\otimes|0\rangle=\begin{bmatrix}0\\1\end{bmatrix}\otimes\begin{bmatrix}1\\0\end{bmatrix}=\begin{bmatrix}0\begin{bmatrix}1\\0\end{bmatrix}\\1\begin{bmatrix}1\\0\end{bmatrix}\end{bmatrix}=\begin{bmatrix}0\\0\\1\\0\end{bmatrix} $$ $$ |11\rangle=|1\rangle\otimes|1\rangle=\begin{bmatrix}0\\1\end{bmatrix}\otimes\begin{bmatrix}0\\1\end{bmatrix}=\begin{bmatrix}0\begin{bmatrix}0\\1\end{bmatrix}\\1\begin{bmatrix}0\\1\end{bmatrix}\end{bmatrix}=\begin{bmatrix}0\\0\\0\\1\end{bmatrix} $$ **多項式展開** $$ (a+b)\otimes(c+d)=a\otimes c+a\otimes d+b\otimes c+b\otimes d $$ <!-- ![](https://i.imgur.com/khQAPGd.png) --> ## Quantum Entanglement 量子糾纏 如果我只要測量某顆 Qbits 而可以得知另一顆的狀態時,則可稱為糾纏態。反過來說,若測量某顆 Qbits 仍無法知道另一顆的狀態,則不可稱為糾纏態。 ## Quantum gates ![](https://i.imgur.com/G3f2mli.png) ### Pauli-X -Y -Z gate Pauli Matrix: X 表示延 x 軸轉 180 度,Y 表示延 y 軸轉 180 度,Z 表示延 z 軸轉 180 度, $$ I\equiv\begin{bmatrix}1 & 0 \\0 & 1\end{bmatrix} $$ $$ X\equiv\begin{bmatrix}0 & 1 \\1 & 0\end{bmatrix} $$ $$ Y\equiv\begin{bmatrix}0 & 1\\-1 & 0\end{bmatrix} $$ $$ Z\equiv\begin{bmatrix}1 & 0\\0 & -1\end{bmatrix} $$ ### NOT gate Not gate 與 Pauli-X 具有相同效果 $$ \begin{bmatrix}\alpha \\ \beta\end{bmatrix}\begin{bmatrix}0 & 1 \\ 1 & 0\end{bmatrix}=\begin{bmatrix}\beta \\ \alpha\end{bmatrix} $$ ### Hadamard gate $$ H\equiv\frac{1}{\sqrt2}\begin{bmatrix}1 & 1 \\ 1 & -1\end{bmatrix} $$ **e.g.** $$ H|0\rangle=\frac{1}{\sqrt2}\begin{bmatrix}1 & 1 \\ 1 & -1\end{bmatrix}\begin{bmatrix}1\\ 0\end{bmatrix} = \frac{1}{\sqrt{2}}\begin{bmatrix}1\\ 1\end{bmatrix}=\frac{1}{\sqrt{2}}(|0\rangle+|1\rangle) $$ $$ H|00\rangle = H(|0\rangle\otimes|0\rangle)=\frac{1}{\sqrt{2}}\begin{bmatrix}1 \\ 1\end{bmatrix}\otimes\frac{1}{\sqrt{2}}\begin{bmatrix}1 \\ 1\end{bmatrix} = \frac{1}{2}\begin{bmatrix}1\\1\\1\\1\end{bmatrix} $$ ### Controlled-NOT gate ![](https://i.imgur.com/pVL93B3.png =300x) > 可以用傳統電路來想 `x->x` `y->x^y` > x: control bit > y: target bit $$ CN\equiv\begin{bmatrix}1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0\end{bmatrix} $$ > 做兩次 Controlled-not 等於沒做 > 1. 用矩陣證明 > 2. 用傳統電路思考做兩次 xor 等於沒做 <!--[](https://i.imgur.com/CaJO1Sj.png)--> **Positive control-not gate & Negative control-not gate** + positive(實心點): control 是 1 時才更動 target + negative(空心點): control 是 0 時才更動 target ![](https://i.imgur.com/LJfdZvn.png =400x) ### Hadmard 與 Controlled-Not 混合電路 ![](https://i.imgur.com/XJjKp0q.png =400x) 先計算 $$ H\otimes H = \frac{1}{2}\begin{bmatrix}1 & 1 & 1 & 1 \\ 1 & -1 & 1 & -1 \\ 1 & 1 & -1 & -1 \\ 1 & -1 & -1 & 1 \end{bmatrix} $$ 然後計算 <!--$$ M_1\begin{bmatrix}1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0\end{bmatrix}M_1=\begin{bmatrix}1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0\end{bmatrix} $$--> ![](https://i.imgur.com/daWrSHl.png) ### Toffoli gate ![](https://i.imgur.com/I77hGIB.png) aka control control not (CCNOT) $$ \begin{bmatrix}1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0\\ 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0\\ 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0\\ 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0\\ 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0\\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1\\ 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0\\ \end{bmatrix} $$ |in | in | in |out | out | out | |:-:|:-:|:-:|:-:|:-:|:-:| |0|0|0|0|0|0| |0|0|1|0|0|1| |0|1|0|0|1|0| |0|1|1|0|1|1| |1|0|0|1|0|0| |1|0|1|1|0|1| |1|1|**0**|1|1|**1**| |1|1|**1**|1|1|**0**| 只有當兩個 control 同時為 1 時,target 才為被反轉 ### swap gate ![](https://i.imgur.com/vBOjHQf.png =300x) input: (a, b) output: (b, a) ### Fredkin gate ![](https://i.imgur.com/EamKc2l.png =100x) 僅有 control bit 是 1 時會使 swap gate 做交換 ## Change of Basis $$ |++\rangle= \begin{bmatrix}\frac{1}{\sqrt{2}}\\\frac{1}{\sqrt{2}}\end{bmatrix} \otimes \begin{bmatrix}\frac{1}{\sqrt{2}}\\\frac{1}{\sqrt{2}}\end{bmatrix}=\begin{bmatrix}\frac{1}{2} \\ \frac{1}{2} \\ \frac{1}{2} \\ \frac{1}{2}\end{bmatrix} $$ $$ |--\rangle= \begin{bmatrix}\frac{1}{\sqrt{2}}\\\frac{-1}{\sqrt{2}}\end{bmatrix} \otimes \begin{bmatrix}\frac{1}{\sqrt{2}}\\\frac{-1}{\sqrt{2}}\end{bmatrix}=\begin{bmatrix}\frac{1}{2} \\ \frac{-1}{2} \\ \frac{-1}{2} \\ \frac{1}{2}\end{bmatrix} $$ $$ |+-\rangle= \begin{bmatrix}\frac{1}{\sqrt{2}}\\\frac{1}{\sqrt{2}}\end{bmatrix} \otimes \begin{bmatrix}\frac{1}{\sqrt{2}}\\\frac{-1}{\sqrt{2}}\end{bmatrix}=\begin{bmatrix}\frac{1}{2} \\ \frac{-1}{2} \\ \frac{1}{2} \\ \frac{-1}{2}\end{bmatrix} $$ $$ |-+\rangle= \begin{bmatrix}\frac{1}{\sqrt{2}}\\\frac{-1}{\sqrt{2}}\end{bmatrix} \otimes \begin{bmatrix}\frac{1}{\sqrt{2}}\\\frac{1}{\sqrt{2}}\end{bmatrix}=\begin{bmatrix}\frac{1}{2} \\ \frac{1}{2} \\ \frac{-1}{2} \\ \frac{-1}{2}\end{bmatrix} $$ $$ |\psi^+\rangle=\frac{1}{\sqrt{2}}\begin{bmatrix}1 \\ 0 \\ 0 \\ 1\end{bmatrix}=a\begin{bmatrix}\frac{1}{2} \\ \frac{1}{2} \\ \frac{1}{2} \\ \frac{1}{2}\end{bmatrix}+b\begin{bmatrix}\frac{1}{2} \\ \frac{-1}{2} \\ \frac{-1}{2} \\ \frac{1}{2}\end{bmatrix} + c \begin{bmatrix}\frac{1}{2} \\ \frac{-1}{2} \\ \frac{1}{2} \\ \frac{-1}{2}\end{bmatrix} + d \begin{bmatrix}\frac{1}{2} \\ \frac{1}{2} \\ \frac{-1}{2} \\ \frac{-1}{2}\end{bmatrix} $$ <!--![](https://i.imgur.com/kWb9qtq.png)--> ## No-cloning Theorem (會考證明) 量子不可複製理論 <!-- ![](https://i.imgur.com/3CQld6E.png =300x) ![](https://i.imgur.com/ujLJa4B.png) --> ![](https://media.discordapp.net/attachments/863362246121619489/909695944604413952/week7_Quantum_gatesCircuits-21.jpg?width=667&height=472) ## Quantum Circuits ### Half-adder | a | b | c | s | |---|---|---|---| | 0 | 0 | 0 | 0 | | 0 | 1 | 0 | 1 | | 1 | 0 | 0 | 1 | | 1 | 1 | 1 | 0 | ![](https://i.imgur.com/EBlPRCL.png =150x) ### Full-adder |c<sub>in</sub>| a | b | c<sub>out</sub> | s | |:---:|:---:|:---:|:---:|---:| | 0 | 0 | 0 | 0 | 0 | | 0 | 0 | 1 | 0 | 1 | | 0 | 1 | 0 | 0 | 1 | | 0 | 1 | 1 | 1 | 0 | | 1 | 0 | 0 | 0 | 1 | | 1 | 0 | 1 | 1 | 0 | | 1 | 1 | 0 | 1 | 0 | | 1 | 1 | 1 | 1 | 1 | ![](https://i.imgur.com/5yyh4Gp.png =300x) 電路合成問題是個 Open problem ### Reversible Circuit ![](https://i.imgur.com/UTl8Jc3.png) 可逆電路好處:能量不會浪費,用數學來說就是要做到 one-to-one and onto **Example** 以半加法器來舉例,為了形成 reversible circuit 將真值表補齊 <style> .red{color:red} .orange{color:orange} .cyan{color:cyan} .blue{color:blue} .green{color:green} </style> > 1. 檢查是否有重複輸出,如果沒有就不用再補 output > ![](https://i.imgur.com/K4HMbSO.png =400x) > 2. 補完 input 補到 $2^3$ 種輸入 > ![](https://i.imgur.com/Qy6agXT.png =400x) > 重點是要怎麼補呢?可以把狀態圖畫出來 > + Hard link: 原本有的(黑色實線) > + Soft link: 自己加的(綠色虛線) > >| 選擇I | 選擇II | >|:-------:|:--------:| >|![](https://i.imgur.com/rLH4zRL.png =300x)|![](https://i.imgur.com/CdV5RJR.png =250x)| > > 我們以 **選擇II** 來舉例 > ![](https://i.imgur.com/gW06bHU.png =400x) > > 3. 最難的部分在四個狀態 cycle 的部分,其中一個方法是先選擇讓一條線斷掉 > * **單個**成一cycle**不理會** > * **兩個**成一cycle**想成互換** > * **三個以上**成一cycle : > 想辦法做**互換**動作,以達成最終目標 > 選擇其中一條線斷掉(**斷狀態差最多**的那個) > 開始互換 > >| 原先狀態 | 切斷狀態 | >|:-------:|:---------:| >|![](https://i.imgur.com/Kp4PAir.png =400x)| ![](https://i.imgur.com/b9pxEws.png =400x)| > > 4. 討論 bit 間的差距,只差一個 bit 稱相鄰,差超過一個 bit 稱不相鄰,不相鄰的的 state 需要先換成相鄰的 > >+ **注意:要反著箭頭來寫** > >+ <span class="red">(0**1**1, 0**0**1)</span> 相鄰 > >+ <span class="green">(**00**1, **11**1)</span> 不相鄰 > >+ <span class="blue">(1**1**1, 1**0**1) 相鄰 > > <span class="green">(**00**1, **11**1)</span></span> 可以改成 > > (001, 011, 111) 或 (001, 101, 111) > > 我們以前者做舉例,要達成前者,可以利用 3 次兩兩交換的方式來實作 > > > 5. 將最複雜的部分轉成邏輯闡 (其他自己連自己的狀態不用處理)並進行化簡 > C=<span class="red">(011,001)</span><span class="green">(001,011)(011,111)(001,011)</span><span class="blue">(111,101)</span> > ![](https://i.imgur.com/RE65lFz.png =400x) ### Reduction ![](https://i.imgur.com/uztimHP.png) <!--期中考分界線--> ## Dense Coding 電路圖要記,期末考不會給 ![](https://i.imgur.com/rCbglvn.png) 2 個 qbits 的訊息可以壓縮成 1 個 bit, i.e. 1 個 bit 可以承載 2 個 bits 的訊息量 假設 Alice 和 Bob 共享糾纏態 $\alpha=|\phi^+\rangle$ 以 01 舉例 $$ (X\otimes I)\alpha=(\begin{bmatrix}0&1\\1&0\end{bmatrix}\otimes\begin{bmatrix}1&0\\0&1\end{bmatrix})\frac{1}{\sqrt{2}}\begin{bmatrix}1\\0\\0\\1\end{bmatrix}\\=\begin{bmatrix}0&0&1&0\\0&0&0&1\\1&0&0&0\\0&1&0&0\\\end{bmatrix}\frac{1}{\sqrt{2}}\begin{bmatrix}1\\0\\0\\1\end{bmatrix}=\frac{1}{\sqrt{2}}\begin{bmatrix}0\\1\\1\\0\end{bmatrix} $$ $$ \beta=\frac{1}{\sqrt{2}}(|01\rangle+|10\rangle) $$ $$ \gamma=\frac{1}{\sqrt{2}}(|01\rangle+|11\rangle) $$ $$ \gamma_0=\frac{1}{\sqrt{2}}(|0\rangle+|1\rangle) $$ $$ \gamma_1=|1\rangle $$ $$ H(\gamma_0)=\frac{1}{\sqrt{2}}\begin{bmatrix}1&1\\1&-1\end{bmatrix}\frac{1}{\sqrt{2}}\begin{bmatrix}1\\1\end{bmatrix}=\frac{1}{2}\begin{bmatrix}2\\0\end{bmatrix}=\begin{bmatrix}1\\0\end{bmatrix}=|0\rangle $$ ## Quantum Teleportation 電路圖要記,期末考不會給,然後會考你 quantum teleportation 和 dense coding 的差別 ![](https://i.imgur.com/2I7u9Gj.png) 有 `abc` 三顆 qbits,Alice 有 `ab`,Bob有`c`,`a` 為訊息內容,`bc`共享糾纏態 經過一連串轉變後,`bc` 糾纏態會消失,`c` 會變成訊息內容 但要根據 `ab` 的情況進行 I X Y Z ![](https://i.imgur.com/WxgD5pg.png) 這就是所謂「{我們合而為一的光|僕たちはひとつの光}」吧 假設訊息為 $|\phi\rangle=a|0\rangle+b|1\rangle$ 假設共用糾纏態為 $\alpha=\frac{1}{\sqrt{2}}(|00\rangle+|11\rangle)$ $$ \lambda = (a|0\rangle+b|1\rangle)\otimes\frac{1}{\sqrt{2}}(|00\rangle+|11\rangle)=\\\frac{1}{\sqrt{2}}(a|000\rangle+a|011\rangle+b|100\rangle+b|111\rangle) $$ $$ \mu=\frac{1}{\sqrt{2}}(a|000\rangle+a|011\rangle+b|110\rangle+b|101\rangle) $$ 經過一連串變換後 ## Entanglement Swapping ### STEP0: Overview 原本 ![](https://i.imgur.com/0USZZyk.png) 後來 ![](https://i.imgur.com/KS2sRmL.png) --- 假設一開始 Alice 和 Bob 有一對糾纏態量子 $|\phi^+\rangle$,Charlie 和 Dave 也有一對糾纏態量子 $|\phi^+\rangle$ ### STEP1: 全部一起 tensor,並且交換 $$ |\phi^+\rangle\otimes|\phi^+\rangle $$ $$ \frac{1}{2}(|0000\rangle+|0011\rangle+|1100\rangle+|1111\rangle)_{ABCD} $$ $$ \frac{1}{2}(|0000\rangle+|0101\rangle+|1010\rangle+|1111\rangle)_{\color{red}{AD}\color{blue}{BC}} $$ ![](https://i.imgur.com/MDbwbBS.png) ### STEP2: 把式子換成 basis 的 tensor 接者把 $|0000\rangle$ 換成 $|00\rangle\otimes|00\rangle$,又因為 $$ |00\rangle=\begin{bmatrix}1\\0\\0\\0\end{bmatrix}=\frac{1}{\sqrt{2}}(\frac{1}{\sqrt{2}}\begin{bmatrix}1\\0\\0\\1\end{bmatrix}+\frac{1}{\sqrt{2}}\begin{bmatrix}1\\0\\0\\-1\end{bmatrix})=\frac{1}{\sqrt{2}}(\phi^{+}+\phi^{-}) $$ 依此類推 $|01\rangle=\frac{1}{\sqrt{2}}(\psi^{+}+\psi^{-})$ $|10\rangle=\frac{1}{\sqrt{2}}(\psi^{+}-\psi^{-})$ $|11\rangle=\frac{1}{\sqrt{2}}(\phi^{+}-\phi^{-})$ 所以整串式子可以換成 $$ \frac{1}{2}(|0000\rangle+|0101\rangle+|1010\rangle+|1111\rangle)\\ =\frac{1}{2}\times\frac{1}{\sqrt{2}}\bigg[ (\phi^{+}+\phi^{-})\otimes(\phi^{+}+\phi^{-})+\\(\psi^{+}+\psi^{-})\otimes(\psi^{+}+\psi^{-})+\\(\psi^{+}-\psi^{-})\otimes(\psi^{+}-\psi^{-})+\\ (\phi^{+}-\phi^{-})\otimes(\phi^{+}-\phi^{-})\bigg] $$ ### STEP3: 完成 經過一番整理後就會變成 $$ \frac{1}{2}(|\phi^+\rangle|\phi^+\rangle+|\phi^-\rangle|\phi^-\rangle+|\psi^+\rangle|\psi^+\rangle+|\psi^-\rangle|\psi^-\rangle)_{ADBC} $$ ### STEP4: 欣賞一下老師的白板 ![](https://i.imgur.com/5AVVprm.png) ↓ 這是另一個 Example,方法差不多,但 basis 更複雜了,寫到手斷掉 ![](https://i.imgur.com/sy8hz0U.png) ↓期末考有給表,但最好還是背一下 ![](https://i.imgur.com/9Mcs7UU.png) ## QKD 流程都要記,都會考 ### BB84 1. Alice 可以傳 Z basis ↑→ 和 X Basis ↗↘ 任意一個 2. Bob 用任意一個光柵觀看 3. Alice 和 Bob 互相告訴對方所使用的光柵,如果 basis 不同就丟棄,如果 basis 一樣但剛好正交(無光),就當 0,而 basis 一樣但剛好平行(有光),就當 1 + Bit survival rates: 50%. + Catch Eve: 25% // TODO Control-Not gate attack (會考) ### B92 uses two non-orthogonal states, for instance S for 0 and D for 1 Simplification of the BB84 protocol + Bit survival rates: 25%. + Catch Eve: about 25% 1. Alice 選 Z basis ↑ 和 X basis ↗ 2. Bob 選 Z basis → 和 X basis ↘ 3. 考慮以下狀況 + 當 Alice 使用 ↑ + 當 Bob 使用 → + 沒光 (25%) + 當 Bob 使用 ↘ + 沒光 (12.5%) + 有光 (12.5%) key = 0 + 當 Alice 使用 ↗ + 當 Bob 使用 → + 沒光 (12.5%) + 有光 (12.5%) key = 1 + 當 Bob 使用 ↘ + 沒光 (25%) ### E91 1. We create a Bell state, giving one member of the EPR pair to Alice and the second member of the EPR pair to Bob. 2. Then we know that Alice and Bob will have measurement results that are completely correlated. 3. Alice and Bob measure their respective qubits in randomly chosen bases. 4. They keep their series of basis choices private until measurements are completed. 5. Then they communicate over an ordinary channel and figure out on which bit positions they used the same basis. They keep these bits to create the key ## HandWritten Note [Note](https://drive.google.com/file/d/1Eh-oPEheF8LBqMk98FibHptLA16fYgn_/view?usp=sharing) --- [TOC] --- ![](https://i.imgur.com/WodCmmh.png) ![](https://i.imgur.com/yzocBKk.png) ![](https://i.imgur.com/IT4JM8o.png) ![](https://i.imgur.com/QmftNKs.png) ![](https://i.imgur.com/6IlgsR8.png) ![](https://i.imgur.com/TFsedSQ.jpg)