# AI toolkit ## Loss 損失函式 定義:要優化的數字,AI的目標是要把這個質變到最小 * BinaryCrossentropy class * CategoricalCrossentropy class * SparseCategoricalCrossentropy class * Poisson class * binary_crossentropy function * categorical_crossentropy function * sparse_categorical_crossentropy function * poisson function * KLDivergence class * kl_divergence function * source form:https://keras.io/api/losses/ ## metrics 成效定義 定義:給予一個公式定義成效 * Accuracy class * BinaryAccuracy class * CategoricalAccuracy class * SparseCategoricalAccuracy class * TopKCategoricalAccuracy class * SparseTopKCategoricalAccuracy class * source form:https://keras.io/api/metrics/ ## Dense 層 Unit:點 input dim:輸入值 kernel_initializer * sourceform:https://keras.io/api/layers/initializers/ ## Activation Functions * softmax:值介於 [0,1] 之間,且機率總和等於 1,適合多分類使用。 * sigmoid:值介於 [0,1] 之間,且分布兩極化,大部分不是 0,就是 1,適合二分法。 * Relu (Rectified Linear Units):忽略負值,介於 [0,∞] 之間。 * tanh:與sigmoid類似,但值介於[-1,1]之間,即傳導有負值。
×
Sign in
Email
Password
Forgot password
or
By clicking below, you agree to our
terms of service
.
Sign in via Facebook
Sign in via Twitter
Sign in via GitHub
Sign in via Dropbox
Sign in with Wallet
Wallet (
)
Connect another wallet
New to HackMD?
Sign up