從圖的某個節點,沿著邊遍歷所有尚未接觸的節點,直到找到目標,或者尋遍所有節點為止。
這種演算法能解決兩種問題
1. 節點A與B之間是否有路徑存在
2. 節點A到B的最短路徑為何

但因為不同節點其實有『等』的差別,所以最好方式是從最近的關係開始往外擴張。
EX:
A: [B, C, D]
D: [H, G]
H: [K, L]
---
所以要搭配queue的方式,去處理哪些應該要先搜尋

```ruby=
def person_is_seller?(name)
name[-1] == "m"
end
class Graph < Hash
def search(name)
search_queue = []
search_queue += self[name]
# The "searched" Hash is how you keep track of which people you've searched before. We use a hash because hash lookups are fast!
searched = {}
until search_queue.empty?
person = search_queue.shift
# Only search this person if you haven't already searched them.
next if searched[person]
return person if yield person
search_queue += self[person]
# Marks this person as searched
searched[person] = true
end
false
end
end
# %w(string1 string2 ...) is a shorter way to define arrays of strings
graph = Graph.new
graph["you"] = %w(alice bob claire)
graph["bob"] = %w(anuj peggy)
graph["alice"] = %w(peggy)
graph["claire"] = %w(thom jonny)
graph["anuj"] = []
graph["peggy"] = []
graph["thom"] = []
graph["jonny"] = []
# we begin the search from vertex "you" and pass the match criterion in the block, then we tap the search result
graph.search("you"){|person| person_is_seller?(person)}.tap{|person| puts "#{person} is a mango seller!" if person}
```