wwwwwww ## ZAD 1 i $LaTe\chi$ $u(a,y) = 0$ $u(x,b) = 0$ $u(0,y) = Asin(\frac{\pi y}{b})$ $u(x,0) = Bsin(\frac{\pi x}{a})$ $u(x,y) = X(x)Y(y)$ $u_{xx}+u_{yy} = 0$ $Y(y)X''(x) + X(x)Y''(y)=0$ $Y(y)X''(x) = - X(x)Y''(y)$ $X''(x)/X(x) = - Y''(y)/Y(y) = \lambda$ $Y'' = -\lambda Y$ $Y'' + \lambda Y = 0$ gdy $\lambda > 0$ $Y(y) = C_1\sin(\sqrt{\lambda}y) + C_2\cos(\sqrt{\lambda}y)$ gdy $\lambda < 0$ $Y(y) = C_1e^{\sqrt{-\lambda}y} + C_2e^{-\sqrt{-\lambda}y}$ gdy $\lambda = 0$ $Y(y) = C_1y + C_2$ gdy $\lambda < 0$ $X(x) = C_1\sin(\sqrt{-\lambda}x) + C_2\cos(\sqrt{-\lambda}x)$ gdy $\lambda > 0$ $X(x) = C_1e^{\sqrt{\lambda}x} + C_2e^{-\sqrt{\lambda}x}$ gdy $\lambda = 0$ $X(y) = C_1x + C_2$ gdy $\lambda < 0$ $X(x)Y(y) = (C_1e^{\sqrt{-\lambda}y} + C_2e^{-\sqrt{-\lambda}y})(C_3\sin(\sqrt{-\lambda}x) + C_4\cos(\sqrt{-\lambda}x))$ gdy $\lambda = 0$ $X(x)Y(y) = (C_1 y + C_2)(C_3x + C_4)$ gdy $\lambda > 0$ $X(x)Y(y) = [C_1\sin(\sqrt{\lambda}y) + C_2\cos(\sqrt{\lambda}y ) ] [C_3e^{\sqrt{\lambda}x} + C_4e^{-\sqrt{\lambda}x}]$ 0 = X(a)Y(y) 0 = X(x)Y(b) Bsin(\pi x / a) = X(x)Y(0) $\lambda = 0$ $XY = d_1 xy + d_2x+d_3y+d4$ niech $\lambda > 0$ Niech $Y(y) = A\sin(\sqrt{\lambda}y)$ $\lambda = (\frac{\pi}{b})^2$ $X(x) = Ce^{\sqrt{\lambda}x} + De^{-\sqrt{\lambda}x}$ $X(a) = Ce^{\sqrt{\lambda}a} + De^{-\sqrt{\lambda}a} = 0$ $X(0) = 1$ Teraz: $u(x,b) = 0$, Bo Y(b) = 0 $u(a,y) = 0$, Bo X(a) = 0 $u(x,0) = 0$, Bo Y(0) = 0 $u(0,y) = Asin(\frac{\pi y}{b})$ To potem: $u(0,b) = 0$ $u(a,0) = 0$ $u(x,0) = Bsin(\frac{\pi x}{a})$ $u(0,y) = 0$ ## ZAD 7 $u(x,y) = X(x)Y(y)$ $u_{xx}+u_{yy} = -\lambda u(x,y)$ $Y(y)X''(x) + X(x)Y''(y)= \lambda X(x)Y(y)$ $Y(y)X''(x) = \lambda X(x)Y(y) - X(x)Y''(y)$ $Y(y)X''(x) = X(x)(\lambda Y(y) - Y''(y))$ $\frac{X''(x)}{\lambda Y(y) - Y''(y)} = \frac{X(x)}{Y(y)}$ $\frac{X''(x)}{X(x)} = \frac{\lambda Y(y) - Y''(y)}{Y(y)} = \delta$ $\lambda Y(y) - Y''(y) = \delta Y(y)$ $(\lambda - \delta)Y(y) = Y''(y)$ $Y(y)=C_1e^{\sqrt{(\lambda - \delta)}} + C_2 e^{-\sqrt{(\lambda - \delta)}}$ $X''(x) = \delta X(x)$ $X''(x) - \delta X(x) = 0$ $\delta < 0$ $X_n(x) = C_nsin(\sqrt{-\delta_n}x)$ $\delta_n = -(\frac{n \pi}{a})^2$ $Y''(y) - (\lambda - \delta)Y(y) = 0$ $\lambda_n = \delta_n - (\frac{n \pi}{b})^2$ $Y_n(y) = sin(\sqrt{-\lambda_n + \delta_n}y)$ $sin(\delta x)sin(\delta y)$ sin(\sqrt{-d_n}x) sqrt(-d_n)cos(sqrt(-d_n)x) d_n sin(sqrt(-d_n)x) $\delta_n sin(\sqrt{-\delta_n}x)sin(\sqrt{-\lambda_n + \delta_n}y) + (-\lambda_n + \delta_n)sin(\sqrt{-\delta_n}x)sin(\sqrt{-\lambda_n + \delta_n}y) =$