Design a data structure that follows the constraints of a Least Recently Used (LRU) cache.
Implement the LRUCache
class:
LRUCache(int capacity)
Initialize the LRU cache with positive size capacity
.int get(int key)
Return the value of the key
if the key
exists, otherwise return -1
.void put(int key, int value)
Update the value of the key
if the key
exists. Otherwise, add the key-value pair to the cache. If the number of keys exceeds the capacity
from this operation, evict the least recently used key.The functions get
and put
must each run in O(1)
average time complexity.
Example 1:
Input
["LRUCache", "put", "put", "get", "put", "get", "put", "get", "get", "get"]
[[2], [1, 1], [2, 2], [1], [3, 3], [2], [4, 4], [1], [3], [4]]
Output
[null, null, null, 1, null, -1, null, -1, 3, 4]
Explanation
LRUCache lRUCache = new LRUCache(2);
lRUCache.put(1, 1); // cache is {1=1}
lRUCache.put(2, 2); // cache is {1=1, 2=2}
lRUCache.get(1); // return 1
lRUCache.put(3, 3); // LRU key was 2, evicts key 2, cache is {1=1, 3=3}
lRUCache.get(2); // returns -1 (not found)
lRUCache.put(4, 4); // LRU key was 1, evicts key 1, cache is {4=4, 3=3}
lRUCache.get(1); // return -1 (not found)
lRUCache.get(3); // return 3
lRUCache.get(4); // return 4
Constraints:
capacity
<= 3000key
<= 104value
<= 105get
and put
.
class LRUCache {
public:
class Node {
public:
int key, val;
Node* prev, * next;
Node(int k, int v) {
this->key = k;
this->val = v;
}
};
Node* head, * tail;
int size, capacity;
unordered_map<int, Node*> dict;
list<int> cache;
LRUCache(int capacity) {
head = new Node(-1, -1);
tail = new Node(-1, -1);
head->next = tail;
tail->prev = head;
size = 0;
this->capacity = capacity;
}
int get(int key) {
/*
case 1: key exists
remove(key)
add2head(key, value)
case 2: key not exists
return -1
*/
if (dict.count(key) > 0) {
Node* node = dict[key];
remove(key);
add2head(key, node->val);
return node->val;
} else {
return -1;
}
}
void put(int key, int val) {
/*
case 1: key exists
remove(key)
add2head(key, value)
case 2: key not exists
add2head(key, value)
if (cache.size() > k) {
removeTail()
}
*/
if (dict.count(key) > 0) {
remove(key);
add2head(key, val);
} else {
add2head(key, val);
}
}
void remove(int key) {
Node* curr = dict[key];
Node* prev = curr->prev;
Node* next = curr->next;
prev->next = next;
next->prev = prev;
size --;
dict.erase(key);
}
void add2head(int key, int val) {
Node* newNode = new Node(key, val);
Node* next = head->next;
head->next = newNode;
newNode->next = next;
next->prev = newNode;
newNode->prev = head;
dict[key] = newNode;
size ++;
if (size > capacity) {
Node* LRU_Node = tail->prev;
remove(LRU_Node->key);
}
}
};
Jerry Wu18 July, 2023
class LRUCache:
def __init__(self, capacity: int):
self.size = capacity
self.cache = OrderedDict()
def get(self, key: int) -> int:
if key not in self.cache:
return -1
self.cache.move_to_end(key)
return self.cache[key]
def put(self, key: int, value: int) -> None:
if key not in self.cache:
if len(self.cache) >= self.size:
self.cache.popitem(last=False)
else:
self.cache.move_to_end(key)
self.cache[key] = value
Yen-Chi ChenTue, Jul 18, 2023