# 時間序列week3 ## Stationarity - Intuition and Definition ### Stochastic process 隨機過程是把很多的隨機變數聚集並加上時間維度,隨機過程是隨機變數的集合(家族),一般通常可分為離散、連續時間的隨機過程。 註:隨機變數既不隨機也不是變數,它的本質是一個函數。 #### 離散時間隨機過程 一個離散時間隨機過程是隨機變數{Xt}的集合,其中n的範圍落在給定的整數集合隨機過程的實現中(t為離散的時間指標)。 #### 連續時間隨機過程 一個連續時間隨機過程是隨機變數{X(t)}的集合,其中t的範圍落在給定的區間之中(t為連續的時間指標)。 --- ![](https://i.imgur.com/6Ccsshp.png) 由SRS得到的資料其實並不具有時序軌跡(左圖),但若是以random walk的概念創造下一步的資料(考量上一步、加入隨機數)能夠產出多組不一樣的時間序列資料。 每一個時點的平均值、變異數會有差異 ![](https://i.imgur.com/7umNIKq.png) 但SRS的就會都相同 ![](https://i.imgur.com/YYeNuQa.png) ### Strict Stationary 1. 隨機過程 Xt 若下列條件成立: 給定任意 n 個時間集合 {t1,...,tn} 與時間平移量 Δt ,其對應的 Xt1+Δt,...,Xtn+Δt 之聯合機率分布(joint probabilities)與其時間平移量Δt無關。亦即 > 對任意 n 維集合 B, > P((Xt1+Δt,...,Xtn+Δt)∈B) > 與 Δt 無關。 2. 或是一隨機過程Xt,若其對任意正有限整數n,都為n-th order strict stationary,稱此隨機過程為 strict stationary。 註:stationary概念上表示對抗時間平移的能力。 ### Weak Stationarity 隨機過程 Xt 若下列條件成立: 1. 其 mean function, E[Xt] 與時間 t 無關 (i.e., E[Xt] 為 constant) 2. 其 auto-correlation function, E[(Xt1)(Xt2)] 只與 t1−t2 有關。亦即E[(Xt1)(Xt2)]=RX(t1−t2)中 RX(⋅)表Xt的autocorrelation function 註:Weak Stationarity 只對E[Xt]與E[(Xt1)(Xt2)]有要求(不需要要求對任意函數"g(x)") ![](https://i.imgur.com/YjKRNEB.png) ![](https://i.imgur.com/cHNe5Dk.png) ## Stationarity: Properties and Examples ### White Noise * **Stationarity** ![](https://i.imgur.com/IpVFmMw.png) ### Random Walks * **Not Stationarity** ![](https://i.imgur.com/R62uIeD.png) ### Moving Average Processes, 𝑀𝐴(𝑞) * **Stationarity** the lag spacing k, the support of MA process q ![](https://i.imgur.com/QZqpeyS.png) ![](https://i.imgur.com/NPnb5LB.png) ## Series and series representation ## 單元重點: - infinite series - convergence - geometric series ## Sequence and series: * ![](https://i.imgur.com/u20Ydwt.png) - 收斂條件: ![](https://i.imgur.com/4V6m7Ik.png) ------ ## Partial sums: ![](https://i.imgur.com/Fv9h9so.png) - 收斂條件: ![](https://i.imgur.com/29sU3Mb.png) - 絕對收斂: ![](https://i.imgur.com/0A3VwBh.png) ------ ## Geometric series - Geometric sequence ![](https://i.imgur.com/ByUS3xe.png) - Geometric series ![](https://i.imgur.com/nszlNkx.png) - 若 a = 1, r = x ![](https://i.imgur.com/MpMH5Mc.png) ------ ## Backward shift operator ### 單元重點: - Backward shift operator 定義 - 運用 backward shift operator 於 MA(q) 及 AR(p) ## Definition ![](https://i.imgur.com/skqqWrJ.png) ------ ## MA(q) process (with a drift) ![](https://i.imgur.com/oFNTLC6.png) ![](https://i.imgur.com/Hx1v8ef.png) ![](https://i.imgur.com/XNxIE0Q.png) ------ ## AR( p) process ![](https://i.imgur.com/aHqSn75.png) ![](https://i.imgur.com/juduDQn.png) ![](https://i.imgur.com/rHcxQBs.png) ## Intrtroduction to Invertibility ### 單元重點: - 了解 invertibility of a stochastic process 的定義 ## ACF are same 1. Model 1 ![](https://i.imgur.com/ItOogHe.png) - Theoretical Auto Covariance Function of Model 1 ![](https://i.imgur.com/m3zu5Gj.png) - Auto Covariance Function and ACF of Model1 ![](https://i.imgur.com/sbQMtLb.png) ## ACF ![](https://i.imgur.com/Gs3qXrT.png) ## Model 2 ![](https://i.imgur.com/l0ajwbV.png) ![](https://i.imgur.com/BfREjlq.png) ## Inverting using Backward shift operator ![](https://i.imgur.com/g4LiLBX.png) ![](https://i.imgur.com/IG9axx6.png) ![](https://i.imgur.com/71gTfZx.png) ## Invertibility - Definition ![](https://i.imgur.com/QSsgVZg.png) # Invertibility condition for MA(q) ![](https://i.imgur.com/h0qTZI1.png) # Stationarity condition for AR(p) ![](https://i.imgur.com/eOekKET.png) # Invertibility and stationarity conditions ![](https://i.imgur.com/Ow8jDLI.png) # Mean-square convergence * we say Xn converge to a random variable X in the mean-square sense ![](https://i.imgur.com/NJVFDdh.png)