# gan 作業6有四個架構,[作業連結](https://speech.ee.ntu.edu.tw/~hylee/ml/ml2022-course-data/Machine%20Learning%20HW6.pdf) 1. DCGAN 用convolution layer的模型來訓練gan 2. WGAN 使用不同的loss定義,並做wieght clip,並把sigmoid去掉 詳細的架構[wgan in github](https://github.com/Aesop-programmer/ML/blob/main/ML_HW6_wgan.ipynb) 結果: 3. WGAN-gp 與wgan非常類似,只再在做wieght clip時發現,所有的weight都會成為極值,因此我們用另一種做法來做這件事情(非常數學 很不懂) [論文](https://arxiv.org/abs/1704.00028) [wgan_gp in github](https://github.com/Aesop-programmer/ML/blob/main/ML_HW6_wgan_gp.ipynb) 結果:
×
Sign in
Email
Password
Forgot password
or
By clicking below, you agree to our
terms of service
.
Sign in via Facebook
Sign in via Twitter
Sign in via GitHub
Sign in via Dropbox
Sign in with Wallet
Wallet (
)
Connect another wallet
New to HackMD?
Sign up