# 1201 meeting note ###### tags: `meeting note` - tasks 1. define input - derive from other instruments midi - [chromagram](https://en.wikipedia.org/wiki/Chroma_feature) of melodic instruments - https://craffel.github.io/pretty-midi/#pretty_midi.PrettyMIDI.get_chroma - drum pattern or other instruments’ onsets - speed, number of instrument, time signature, beat position - other infos - style, rhythm type, composer, etc. - need to find other source for these info - [kaggle jazz-standard](https://www.kaggle.com/datasets/melihcanyardi/jazz-standards) - [JSD dataset](https://jazzomat.hfm-weimar.de/dbformat/synopsis/solo1.html) - input format - chromagram 12x3 - speed (int) - number of instrument (int) - time signature (2 int) - beat position (int) - bar position (int) - ![](https://i.imgur.com/487zchT.png) 2. define output - one input per bar, one output per bar (one to one) - (time(16th note), midi num(+rest)) - one input per bar, one output per step(16th note) (one to many) - midi num(+rest) - one input per step, one output per step (one to one) ☑︎ - midi num(+rest) ![](https://i.imgur.com/3rbum5h.png) 3. define loss - octave distance - pitch distance - simple cross-entropy? 4. find and preprocess data - [thejazzpage](http://www.thejazzpage.de/index1.html) - [minor9](https://bhs.minor9.com/midi/jazzstandards/) - [Doug McKenzie Jazz](http://bushgrafts.com/wp/) (some) - [Jazz ML ready MIDI](https://www.kaggle.com/datasets/saikayala/jazz-ml-ready-midi) 5. build basic model - RNN LSTM (https://www.tensorflow.org/api_docs/python/tf/keras/layers/LSTM) - RNN GRU (https://www.tensorflow.org/api_docs/python/tf/keras/layers/GRU) - [tensorflow RNN tutorial](https://www.tensorflow.org/guide/keras/rnn) - questions - solo and accompany mode? - other data resource - https://github.com/wayne391/symbolic-music-datasets - https://fourscoreandmore.org/musoRepo/ - https://groups.google.com/a/tensorflow.org/g/magenta-discuss/c/6ZLbzTjjpHM - RNN in DL course - https://nthu-datalab.github.io/ml/#lecture12