### 複數的n次方根 複數$z^n = r (\cos\theta + i\sin\theta)\;, r > 0,\;0\leq\theta \leq 2\pi$ 解為 $$ z_{k} = \sqrt[n]{r}\;(\cos\frac{\theta + 2k\pi}{n} + i\sin\frac{\theta +2k\pi}{n}),\; k= 0,1,2,\dots,n-1 $$ --- $Proof:$ $$ |z^n| = |r (\cos\theta + i\sin\theta)| \Rightarrow \; |z|^n = r,\;|z| = \sqrt[n]{ r } $$ $$ 令z = \sqrt[n]{ r }(\cos \phi + i\sin \phi) $$ $$ 又z^n = r (\sin\theta + i\sin\theta)\; $$ $$ \therefore [\sqrt[n]{ r }(\cos \phi + i\sin \phi)]^n = r(\cos\theta +i\sin\theta) $$ 由 de Moivre's Theorem: $$\Rightarrow [\sqrt[n]{ r }(\cos \phi + i\sin \phi)]^n =r(\cos n\phi + i\sin n\phi) = r(\cos\theta +i\sin\theta) $$ 根據複數相等的意義,有 $$ n\phi = \theta + 2k\pi\;\Rightarrow \phi = \frac{\theta+ 2k\pi}{n} $$ 所以 $$ z = \sqrt[n]{r}\;(\cos\frac{\theta + 2k\pi}{n} + i\sin\frac{\theta +2k\pi}{n}),\; k= 0,1,2,\dots,n-1 $$ --- ### 1的n次方根 $z^n = 1$ 的解為 $$ z_{k} = \text{cos} \frac{2k\pi}{n} + i\text{ sin} \frac{2k\pi}{n}, k= 0,1,2,\dots,n-1 $$ 當代入$k= 0,1,2,\dots,n-1$ $$ z_{0}=\text{cos}\text{0} + i\text{ sin}\text{0} = 1 $$ $$ z_{1} = \omega = \text{cos}\frac{2\pi}{n} + i\text{sin}\frac{2\pi}{n} $$ $$ z_{2} = \omega^2 = \text{cos} \frac{4\pi}{n} + i\text{sin} \frac{4\pi}{n}$$ $$ \vdots $$ $$ z_{n-1} = \omega^{n-1} =\cos\frac{{2}{(n-1)}\pi}{n} + i\sin \frac{{2}{(n-1)}\pi}{n} $$ #### 性質 1. $\omega^n =1$ 2. $\omega^{n-1}+\omega^{n-2}+\dots+\omega+1 = 0$ 3. $$(\alpha - \omega)(\alpha - \omega^2) \dots (\alpha - \omega^{n-1}) = \alpha^{n-1} + \alpha^{n-2} + \dots + \alpha + 1 = \frac{1(1-\alpha^n)}{1-\alpha}$$ --- #### $Proof:$ 1. $$ z_{n} = \omega^n = \text{cos}{2\pi} + i\text{ sin}{2\pi} = 1 $$ 2. $x^n -1$ 有下列因式分解 $$ \left\{ \begin{matrix} x^n -1 &=& (x-1)(x-\omega)(x-\omega^2)\dots(x-\omega^{n-1})\\ &=& (x-1)(x^{n-1}+x^{n-2}+\dots+x+1) \end{matrix} \right. $$ 所以 $$ (x-1)(x-\omega)(x-\omega^2)\dots(x-\omega^{n-1}) = (x-1)(x^{n-1}+x^{n-2}+\dots+x+1) $$ $$ (x-\omega)(x-\omega^2)\dots(x-\omega^{n-1}) = (x^{n-1}+x^{n-2}+\dots+x+1) $$ 將$\omega代入x$,可得到 $$ \omega^{n-1}+\omega^{n-2}+\dots+\omega+1 = 0 $$ 3. 將$\alpha代入x$,可得到 $$(\alpha - \omega)(\alpha - \omega^2) \dots (\alpha - \omega^{n-1}) = \alpha^{n-1} + \alpha^{n-2} + \dots + \alpha + 1 = \frac{1(1-\alpha^n)}{1-\alpha}$$