--- tags: 數學 title: 模運算0 --- # Mod 性質 :::success ## MOD 運算性質 - 假設 a,b,a,b都是整數 - 假設 c(運算結果),是非負整數 ### 加法 - $c = (a + b)\%m = (a\%m + b\%m) \% m$ ### 減法 - $c = (a - b)\%m = ((a\%m - b\%m)\%m +m)\%m$ - 不過建議這樣寫 - if $a\%m-b\%m >= 0$ ,$c = (a - b)\%m = (a\%m - b\%m)\%m$ - if $a\%m-b\%m < 0$ ,$c = (a - b)\%m = (a\%m - b\%m)\%m + m$ ### 乘法 - $c = (a * b)\%m = (a\%m * b\%m)\% m$ ### 除法 - $c = (a / b)\%m =$ [參考--模逆元](https://hackmd.io/MBrsyQ4ySKuGSNb7RGR0fg?both) ### 萬能公式 - $a\%m = a - \lfloor \frac{a}{m} \rfloor \times m$ ::: :::success ## GCD, LCM - 最大公因數 - $gcd(a,b) = gcd(b, a\%b)$ - $a * b = gcd(a,b) * lcm(a,b)$ :::
×
Sign in
Email
Password
Forgot password
or
By clicking below, you agree to our
terms of service
.
Sign in via Facebook
Sign in via Twitter
Sign in via GitHub
Sign in via Dropbox
Sign in with Wallet
Wallet (
)
Connect another wallet
New to HackMD?
Sign up