###### tags: `數學` `數學教室` `國高中數學` `淺談` `三角函數` # 淺談 - 積化和差、和差化積公式 ## 目標 - $sin(x+y) + sin(x-y) = 2\ sin(x)\ cos(y)$ - $cos(x+y) + cos(x-y) = 2\ cos(x)\ cos(y)$ - $cos(x+y) - cos(x-y) = -2\ sin(x)\ sin(y)$ ## 證明 我們用代數的方法,試著展開左式。 和差角公式: - $sin(x+y) = sin(x)\ cos(y) + cos(x)\ sin(y)$ - $sin(x-y) = sin(x)\ cos(y) - cos(x)\ sin(y)$ - $cos(x+y) = cos(x)\ cos(y) - sin(x)\ sin(y)$ - $cos(x-y) = cos(x)\ cos(y) + sin(x)\ sin(y)$ 我們將前兩式跟後兩式各自相加,得到: \begin{align*} sin(x+y) + sin(x-y) &= [sin(x)\ cos(y) + cos(x)\ sin(y)] + [sin(x)\ cos(y) - cos(x)\ sin(y)] \\ &= 2\ sin(x)\ cos(y) \end{align*} \begin{align*} cos(x+y) + cos(x-y) &= [cos(x)\ cos(y) - sin(x)\ sin(y)] + [cos(x)\ cos(y) + sin(x)\ sin(y)] \\ &= 2\ cos(x)\ cos(y) \end{align*} 相減則可以得到 Goal 的第三式 {%hackmd XLFYqwvTTaiUGmzsCiFAIw %}