###### tags: `108上助教` `數學` # 數學導論HW8 ## ch5-6 ![課本](https://i.imgur.com/UZqCIRe.png) #### solution --- **a)** Suppose $x \in f(A)-f(B)$ $i.e.\ x\in f(A)$ and $x \notin f(B)$ $\therefore \exists\ y \in A$ such that $f(y) = x$ and $\because\ x\notin f(B)\ ,\ \therefore\ y \notin B$ $\Rightarrow y\in A-B$ $\Rightarrow x\in f(A-B)$ $\Rightarrow f(A) - f(B) \subseteq f(A - B)\ \Box$ --- **b)** Suppose $x\in f^{-1}(A) - f^{-1}(B)$ $i.e.\ x\in f^{-1}(A)$ and $x \notin f^{-1}(B)$ $\Rightarrow f(x)\in A$ and $f(x)\notin B$ $\Rightarrow f(x) \in A - B$ $x \in f^{-1}(A - B)$ $\Rightarrow f^{-1}(A) - f^{-1}(B) \subseteq f^{-1}(A - B)\ \Box$ --- **c)** For (a), we give a counter example. Consider $f:\mathbb{R} \rightarrow \mathbb{R}\ ,\ f(x) = x^2$ Let $A = [-1,1]\ ,\ B = [-1,0]$ then $A - B = (0,1]$ $\Rightarrow f(A-B) = (0,1]$ Let $y = \dfrac{1}{4} \in f(A - B)$ We can find $x_{1} \in A - B$ such that $f(x_{1}) = \dfrac{1}{4}$ $\Rightarrow x_{1} = \dfrac{1}{2}$ But let $x_{2} = \dfrac{-1}{2} \in B$ $f(x_{2}) = \dfrac{1}{4}$ which belongs to $f(A - B)$ $\Rightarrow y \in f(B)$ $\Rightarrow y \notin f(A) - f(B)$ $\Rightarrow f(A - B) \nsubseteq f(A) - f(B)$ Hence $f(A - B) \neq f(A)- f(B)\ \Box$ For (b), we give a proof. We need to show that $f^{-1}(A - B) \subseteq f^{-1}(A) - f^{-1}(B)$ (以下是證明) Let $x \in f^{-1}(A - B)$ $\Rightarrow f(x) \in A - B\ ,\ i.e.\ f(x) \in A$ and $f(x) \notin B$ $\Rightarrow x \in f^{-1}(A) - f^{-1}(B)$ $\Rightarrow f^{-1}(A - B) \subseteq f^{-1}(A) - f^{-1}(B)\ \Box$ --- **d)** We have showed (b) above. Now we want to show the equality holds in (a) if $f$ is one-to-one. (以下是證明) Suppose $f: X \rightarrow Y$ is one-to-one We want to show that $f(A - B) \subseteq f(A) - f(B)$ Let $x \in f(A - B)$ $\Rightarrow \exists y \in A - B$ such that $f(y) = x$ $\because\ y \in A - B\ ,\ \therefore\ y \in A$ $\Rightarrow x \in f(A)$ Since $f$ is one-to-one, there exists **NO** $y_{2} \in B$ such that $f(y_{2}) = x$ $\Rightarrow x \notin f(B)$ $\Rightarrow x \in f(A) - f(B)$ $\Rightarrow f(A - B) \subseteq f(A) - f(B)$ Hence we prove that $f(A - B) = f(A) - f(B)\ \Box$