###### tags: `108上助教` `數學` # 數學導論HW6 ## ch4-3 ![](https://i.imgur.com/8eG1SfO.png) #### proof $\mbox{Let }R = \{(x, y)\in \mathbb{R}\times\mathbb{R}|f(x) = f(y)\}\\ \mbox{We want to show that }R \mbox{ is a relation on }\mathbb{R}.$ $\mbox{Check }$ 1. $\mbox{reflexive}$ $\mbox{Let } x \in \mathbb{R}\\ \because f(x) = x^2 = f(x)\\ \therefore (x, x)\in R$ 2. $\mbox{symmetric}$ $\mbox{Let }x, y \in \mathbb{R} \mbox{ , and }(x, y) \in R\\ i.e. f(x) = f(y)\\ \Rightarrow x^2 = y^2\\ \Rightarrow y^2 = x^2\\ \Rightarrow f(y) = f(x)\\ \Rightarrow (y, x)\in R$ 3. $\mbox{transitive}$ $\mbox{Let }x, y, z \in \mathbb{R} \mbox{ , and }(x, y),(y, z) \in R\\ \Rightarrow f(x)=f(y) , f(y) = f(z)\\ \Rightarrow x^2 = y^2 , y^2 = z^2\\ \Rightarrow x^2 = z^2\\ \Rightarrow f(x) = f(z)\\ \Rightarrow (x, z) \in R$ $\mbox{By 1. to 3. , we proved that } R \mbox{ is a relation on }\mathbb{R}$. $[-7] = \{y \in \mathbb{R}|(-7, y)\in R\}$ $\mbox{That is, }\\ \mbox{find }y \mbox{ such that } f(-7) = f(y)\\ \Rightarrow \mbox{find }y \mbox{ such that } (-7)^2 = 49 = y^2\\ \Rightarrow y = 7 \mbox{ or } -7\\ \Rightarrow [-7] = \{7, -7\}\ \Box$