###### tags: `108上助教` `數學` # 數學導論HW3 ## ch3-2 ![](https://i.imgur.com/44Xqty8.png) #### proof $\mbox{We use the Extended Principle of Mathematical Induction.}$ $\mbox{Let } S =\{n \in \mathbb{N} : n \geq 3 \mbox{ and } (1+\dfrac{1}{n})^n < n\}$ 1. $\mbox{Step 1 : check }3 \in S$ $\because (1+\dfrac{1}{3})^3 = \dfrac{64}{27} < 3$ $\therefore 3 \in S$ 2. $\mbox{Step 2 : Suppose }n \geq 3 \mbox{ and }n \in S$ $\mbox{Hence we have } (1+\dfrac{1}{n})^n < n\ldots (*)$ $\mbox{We want to show that } (1+\dfrac{1}{n+1})^{n+1} < n+1$ ----(我們的目標) (proof of this claim) $\mbox{Note that } \dfrac{1}{n+1} < \dfrac{1}{n} , \mbox{ for } n \in \mathbb{N}$ $\mbox{and if } a < b , a^n < b^n , \mbox{ for } a ,b > 0$ $\mbox{So }$ \begin{equation} \begin{split} (1+\dfrac{1}{n+1})^{n+1} &= (1+\dfrac{1}{n+1})^{n}(1+\dfrac{1}{n+1})\\ &< (1+\dfrac{1}{n})^{n} (1+\dfrac{1}{n+1})\\ &< n(1+\dfrac{1}{n+1})\ldots by (*)\\ &= n + \dfrac{n}{n+1}\\ &< n + 1 \end{split} \end{equation} $\mbox{Hence } n+1 \in S$ $\mbox{By the Extended Principle of Mathematical Induction, } \{n\in \mathbb{N} : n \geq 3\} \subseteq S\ \Box$