###### tags: `108上助教` `數學` # 數學導論HW2 ## ch3-1 ![](https://i.imgur.com/XIj0kQO.png) #### **proof** 注意這題要證明的是對於所有的正偶數都成立。 我們要用 **the Principle of Mathematical Induction** 來證明。 $\mbox{Note that } n \mbox{ is even if }n = 2k \mbox{ , } k \in \mathbb{N}$ $\mbox{Let }$ $$S = \{k \in \mathbb{N} : (1-\dfrac{1}{2})(1+\dfrac{1}{3})(1-\dfrac{1}{4})\cdots (1-\dfrac{(-1)^{2k}}{2k}) = \dfrac{1}{2}\}$$ $\mbox{We want to show that } S = \mathbb{N}$ $\mbox{First, check } 1 \in S$ $\because (1-\dfrac{1}{2}) = \dfrac{1}{2} \mbox{ , we have } 1 \in S$ $\mbox{Next suppose } k\in S \mbox{ , that is , we have }(1-\dfrac{1}{2})(1+\dfrac{1}{3})(1-\dfrac{1}{4})\cdots (1-\dfrac{(-1)^{2k}}{2k}) = \dfrac{1}{2}$ $\mbox{We need to show that }k+1 \in S$ $$(1-\dfrac{1}{2})(1+\dfrac{1}{3})(1-\dfrac{1}{4})\cdots (1-\dfrac{(-1)^{2k}}{2k})(1-\dfrac{(-1)^{2k+1}}{2k+1})(1-\dfrac{(-1)^{2k+2}}{2k+2})\\ = \dfrac{1}{2} (1-\dfrac{(-1)^{2k+1}}{2k+1})(1-\dfrac{(-1)^{2k+2}}{2k+2})\\ = \dfrac{1}{2} (1-\dfrac{-1}{2k+1})(1-\dfrac{1}{2k+2})\\ =\dfrac{1}{2} (\dfrac{2k+2}{2k+1}) (\dfrac{2k+1}{2k+2})\\ = \dfrac{1}{2}$$ $\mbox{Hence } k+1 \in S$ $\mbox{By the Principle of Mathematical Induction, } S = \mathbb{N}\ \Box$