###### tags: `108上助教` `數學` # 數學導論HW1 ## ch2-2 ### 33. **Theorem 2.6** Let $A$ and $B$ be subsets of some universal set $U$. Then $\mbox{c) } (A \cap B)^{'} = A^{'} \cup B^{'}$ $\mbox{d) }A - B = A \cap B^{'}$ --- ### **proof** #### c) #### method 1(左包右包) $(\mbox{Case 1: }\subseteq )$ $\mbox{Let } x \in (A \cap B)^{'}$ $\therefore x \notin A \cap B$ $\Rightarrow x \notin A \mbox{ or } x \notin B$ (by Proposition 1.1 (d)) $\Rightarrow x \in A^{'} \mbox{ or } x \in B^{'}$ $\Rightarrow x \in A^{'} \cup B^{'}$ $\Rightarrow (A \cap B)^{'} \subseteq A^{'} \cup B^{'}$ $(\mbox{Case 2: }\supseteq )$ $\mbox{Let } x \in A^{'} \cup B^{'}$ $\therefore x \in A^{'} \mbox{ or } x \in B^{'}$ $\Rightarrow x \notin A \mbox{ or } x \notin B$ $\Rightarrow x \notin A \cap B$(by Proposition 1.1 (d)) $\Rightarrow x \in (A \cap B)^{'}$ $\Rightarrow A^{'} \cup B^{'} \subseteq (A \cap B)^{'}$ $\mbox{Hence , } (A \cap B)^{'} = A^{'} \cup B^{'}\ \Box$ #### method 2 (by Theorem 2.6 (a) and (b)) $\mbox{We have } (A^{'} \cup B^{'})^{'} = A \cap B$ $\Rightarrow A^{'} \cup B^{'} = ((A^{'} \cup B^{'})^{'})^{'} = (A \cap B)^{'}\ \Box$ #### d) $(\mbox{Case 1: }\subseteq )$ $\mbox{Let } x \in A-B$ $i.e. x \in A \mbox{ and } x \notin B$ $\Rightarrow x \in A \mbox{ and } x \in B^{'}$ $\Rightarrow x \in A \cap B^{'}$ $\Rightarrow A - B \subseteq A \cap B^{'}$ $(\mbox{Case 2: }\supseteq )$ $\mbox{Let } x \in A \cap B^{'}$ $\Rightarrow x \in A \mbox{ and } x \in B^{'}$ $\Rightarrow x \in A \mbox{ and } x \notin B$ $\Rightarrow x \in A-B$ $\Rightarrow A \cap B^{'} \subseteq A - B$ $\mbox{Hence } A - B = A \cap B^{'}\ \Box$ --- ### 46. Prove or find a counterexample to each of the followling. $\mbox{a) }(A-B)\cup C = A - (B \cup C)$ $\mbox{b) }(A^{'} \cup B) \cap (B^{'} \cup C) \subseteq A^{'} \cup C$ --- ### **solution** #### a) $\mathrm{We\ give\ a\ counterexample.}\\ \mbox{Let } A = \{1, 2, 3, 4, 5\} , B = \{2, 3\} , C = \{4\}\\ \mbox{then } A-B = \{1, 4, 5\} , \mbox{and }(A-B)\cup C = \{1, 4,5\}\\ \mbox{but } B \cup C = \{2,3,4\}, \mbox{and } A - (B \cup C) = \{1, 5\}\\ \{1, 4, 5\} \neq \{1, 5\}\\ \mathrm{This\ is\ a\ counterexample.}\Box$ #### b) $\mbox{We give a proof.}$ $\mbox{Let } x \in (A^{'} \cup B) \cap (B^{'} \cup C)$ $\Rightarrow x \in A^{'} \cup B \mbox{ and } x \in B^{'} \cup C$ $\mbox{case 1 : } x \in A^{'} \mbox{ and } x \in B^{'} , \mbox{ implies } x \in A^{'}$ $\mbox{case 2 : }x \in A^{'} \mbox{ and } x \in C , \mbox{ implies } x \in A^{'} \cup C$ $\mbox{case 3 : }x \in B \mbox{ and } x \in B^{'} , \mbox{ which is impossible.}$ $\mbox{case 4 : }x \in B \mbox{ and } x \in C , \mbox{ implies } x \in C$ $\mbox{By case 1 ~ case 4 , we have } x \in A^{'} \cup C\\ \mbox{Hence }(A^{'} \cup B) \cap (B^{'} \cup C) \subseteq A^{'} \cup C\ \Box$