# 連續機率密度函數的$E(X)、VAR(X)、M_x(t)$ ###### tags: `統研所考試`、`機率數統` ## 連續部分 ### 均勻分配 $f_x=\frac{1}{b-a}$ , $a≦x≦b$ #### ++E(X)++ **1.使用定義** $E(X)=\int_a^bx\frac{1}{b-a} \mathrm{d} x$ $=\frac{1}{b-a}[\frac{1}{2}x^2]^b_a=\frac{1}{b-a}\times\frac{(b+a)(b-a)}{2}$ $=\frac{(b+a)}{2}$ **2.使用Monment Generating Function** $E(X)=M^`_x(0)$ $M^`_x(t)=\frac{(e^{tb}-e^{ta})(b-a)^2t-(e^{tb}-e^{ta})(b-a)}{[(b-a)t]^2}$ $=\frac{(e^{tb}-e^{ta})}{t}-\frac{(e^{tb}-e^{ta})}{(b-a)t^2}$ #### ++VAR(X)++ **1.使用定義** $VAR(X)=E(X^2)-[E(X)]^2$ $E(X^2)=\int_a^bx^2\frac{1}{b-a} \mathrm{d} x$ $=\frac{1}{b-a}[\frac{1}{3}x^3]^b_a=\frac{1}{b-a}\times\frac{(b^3-a^3)}{3}$ $=\frac{1}{b-a}\times\frac{(b-a)(b^2+ab+a^2)}{3}$ $=\frac{(b^2+ab+a^2)}{3}$ $VAR(X)=\frac{(b^2+ab+a^2)}{3}-\frac{(b+a)^2}{2}$ $=\frac{(4b^2+4ab+4a^2-3b^2-6ab-3a^2)}{12}$ $=\frac{(b^2-2ab+a^2)}{12}=\frac{(b^-a)^2}{12}$ **2.使用Monment Generating Function** $E(X^2)=M^{``}_x(0)$ #### ++M~x~(x)++ $M_x(X)=\int_a^b e^{tx}\frac{1}{b-a} \mathrm{d} x$ $=\frac{1}{b-a}[\frac{1}{t}e^{tx}]^b_a=\frac{e^{tb}-e^{ta}}{(b-a)t}$ ### 指數分佈1 > 指數分佈共2種寫法 $f_x=\frac{1}{θ}e^{\frac{-x}{θ}}$ , $0<x<\infty$ #### ++E(X)++ **1.使用定義** $E(X)=\int_0^\infty x\frac{1}{θ}e^{\frac{-x}{θ}} \mathrm{d} x$ $=\frac{1}{θ}\int_0^\infty xe^{\frac{-x}{θ}} \mathrm{d} x$ Let $u = \frac{-x}{θ}$, $x=-θu$ $dx = -θdu$, range不變 $=-θ\int_0^\infty ue^u \mathrm{d} u$ $=-θ[ue^u-e^u]_0^\infty=θ$ **2.使用Monment Generating Function** $E(X)=M^`_x(0)$ $M^`_x(t)=θ(1-tθ)^{-2}$ $M^`_x(0)=θ$ ` #### ++VAR(X)++ **1.使用定義** $E(X^2)=\int_0^\infty x^2\frac{1}{θ}e^{\frac{-x}{θ}} \mathrm{d} x$ $=\frac{1}{\theta}\Gamma (3)\theta^3$ $=2\theta^2$ $Var(X)= 2θ^2-θ^2=θ^2$ **2.使用Monment Generating Function** $E(X)=M^{``}_x(0)$ $M^`_x(t)=θ(1-tθ)^{-2}$ $M^{``}_x(t)=2θ^2(1-tθ)^{-3}$ $M^{``}_x(0)=2θ^2$ $VAR(X)=2θ^2-θ^2=θ^2$ #### ++M~x~(x)++ $M_x(X)=\int_0^\infty e^{tx}\frac{1}{θ}e^{\frac{x}{θ}} \mathrm{d} x$ $=\int_0^\infty \frac{1}{θ}e^{(\frac{-1}{θ}+t)^x} \mathrm{d} x$ Let $u = x(1-tθ)$, $du=(1-tθ)dx,range不變$ $=\frac{1}{1-tθ}\times \frac{1}{θ}\int_0^\infty e^{\frac{-u}{θ}} \mathrm{d} u$ $=\frac{1}{1-tθ}\times \frac{1}{θ}[-θe^{\frac{-u}{θ}}]_0^\infty=\frac{1}{1-tθ}\times \frac{1}{θ} \times θ$ $=\frac{1}{1-tθ}$ ### 指數分佈2 > 指數分佈共2種寫法 > $\lambda=\frac{1}{θ}$ $f_x=\lambda e^{-\lambda x}$ , $0<x<\infty$ > 兩種寫法的差異在於,$\lambda$ 代表的是某個時間區間下的發生頻率,$\beta$ or $\theta$ 則是發生事件1次的所需CD時間。 #### ++E(X)++ **1.使用定義** $E(X)=\int_0^\infty x\lambda e^{-\lambda x}\mathrm{d} x$ Let $u = \lambda x$, $du =\lambda du$ $=\frac{1}{\lambda}\int_0^\infty u e^{-u}\mathrm{d} u$ $=\frac{1}{\lambda}[-ue^{-u}-e^{-u}]_0^\infty$ $\frac{1}{\lambda}$ #### ++VAR(X)++ **1.使用定義** $E(X^2)=\int_0^\infty x^2\lambda e^{-\lambda x}\mathrm{d} x$ Let $u = \lambda x$, $du =\lambda du$ $=\frac{1}{\lambda^2}\int_0^\infty u^2 e^{-u}\mathrm{d} u$ $=\frac{1}{\lambda^2}[-u^2e^{-u}-2ue^{-u}+2e^{-u}]_0^\infty$ $=\frac{2}{\lambda^2}$ $VAR(X)=\frac{2}{\lambda^2}-\frac{1}{\lambda^2}=\frac{1}{\lambda^2}$ #### ++M~x~(x)++ $M_x(X)=\int_0^\infty e^{tx}\lambda e^{-\lambda x}\mathrm{d} x$ $=\int_0^\infty \lambda e^{(t-\lambda )x}\mathrm{d} x$ Let $u=tx-\lambda x$, $du=(t-\lambda)dx$ $=\frac {\lambda}{t- \lambda} \int_0^{\infty} e^u du=\frac {\lambda}{t- \lambda} [e^u]_0^{\infty}$ $\frac {\lambda}{t- \lambda}$, $t<\lambda$ ### Gamma分布1 > 共2種寫法 > 是指數分布的累加版本 :::info :information_source: Gamma Function: $Γ(α)= \int_0^\infty x^{α-1}e^{-x} dx=(α-1)!$ ::: $f_x=\frac {\lambda ^αx^{α-1}e^{-\lambda x}}{Γ(α)}$, $x>0$ #### ++E(X)++ **1.使用定義** $E(X)=\int_0^\infty \frac {x \times\lambda ^αx^{α-1}e^{-\lambda x}}{Γ(α)}$ $=\int_0^\infty \frac {\lambda ^αx^{α}e^{-\lambda x}}{Γ(α)}$ $=\frac{α}{\lambda}\int_0^\infty \frac {\lambda ^{α+1}x^{α}e^{-\lambda x}}{Γ(α+1)}=\frac{α}{\lambda}$ #### ++VAR(X)++ **1.使用定義** $E(X^2)=\int_0^\infty \frac {x^2 \times\lambda ^αx^{α-1}e^{-\lambda x}}{Γ(α)}$ $=\int_0^\infty \frac {\lambda ^αx^{α+1}e^{-\lambda x}}{Γ(α)}$ $=\frac{α(α+1)}{\lambda^2}\int_0^\infty \frac {\lambda ^{α+1}x^{α}e^{-\lambda x}}{Γ(α+1)}=\frac{α(α+1)}{\lambda^2}$ $VAR(X)=\frac{α(α+1)}{\lambda^2}-\frac{α^2}{\lambda^2}=\frac{\alpha}{\lambda^2}$ #### ++M~x~(x)++ $M_x(X)=\int_0^\infty \frac {e^{tx} \times\lambda ^αx^{α-1}e^{-\lambda x}}{Γ(α)}$ $=\int_0^\infty \frac {\lambda ^αx^{α-1}e^{-(\lambda-t) x}}{Γ(α)}$ $=\frac{\lambda^α}{Γ(α)}\int_0^\infty x^{α-1}e^{-(\lambda-t)x}dx$ $=\frac{\lambda^α}{Γ(α)}(\frac{1}{\lambda-t})^α(α-1)!=(\frac{\lambda}{\lambda-t})^α$ :::info :information_source: Use DI method: ![](https://hackmd.io/_uploads/S1eQ7gU8n.png) 帶入值$[0,\infty]$的話,會發現有x的值都會變成0,只剩下0帶入的最後一個成積有東西,解x=0代入$-[(α-1)!x^{α-α=0} \times -(\frac{1}{\lambda-t})^αe^{-(\lambda-t)x}]$ 即為$(\frac{1}{\lambda-t})^α(α-1)!$ ::: ### Gamma分布2 > 共2種寫法 > 是指數分布的累加版本 $f_x = \frac { αx^{α-1}e^{\frac {-x}{\beta} }}{\beta^aΓ(α)}$, $x>0$ 證明同1,部份省略。 #### ++E(X)++ **1.使用定義** \begin{array}{rcl} E(X) &=& \int_0^\infty \frac{x x^{\alpha-1} e^{-\beta x}}{\Gamma(\alpha)\beta^\alpha} \, dx \\ &=& \int_0^\infty \frac{ x^\alpha e^{-\beta x}}{\Gamma(\alpha) \beta^\alpha} \, dx \\ &=& \alpha \beta \int_0^\infty \frac{ x^\alpha e^{-\beta x}}{\Gamma(\alpha+1)\beta^{\alpha+1}} \, dx \\ &=& \alpha \beta \end{array} #### ++VAR(X)++ **1.使用定義** \begin{array}{rcl} E(X^2) &=& \int_0^\infty \frac{x^2 x^{\alpha-1} e^{-\beta x}}{\Gamma(\alpha)\beta^\alpha} \, dx \\ &=& \int_0^\infty \frac{ x^{\alpha+1} e^{-\beta x}}{\Gamma(\alpha)\beta^\alpha} \, dx \\ &=& \alpha(\alpha+1)\beta^2\int_0^\infty \frac {x^{\alpha}e^{-\lambda x}}{\Gamma(\alpha+1)\beta ^{\alpha+1}} \, dx\\ &=&\alpha(\alpha+1)\beta^2 \end{array} $\mathsf{Var}X=\alpha(\alpha+1)\beta^2 -(\alpha \beta)^2= \alpha \beta ^2$ ### Laplace 分布 >常態分佈的前身 $f_x= \frac{1}{2\sigma}e^{-|x-\mu|/\sigma}, -\infty<x<\infty$ #### ++E(X)++、 ++VAR(X)++ 正常情況求出他的$E(X), Var(X)$極度麻煩,所以先做分布轉換: let $W= \frac{X-\mu}{\sigma}$ , 求出$f(w)$ $F(w)=P(W \le w)=P(\frac{X-\mu}{\sigma}\le w)=P(X \le w \sigma +\mu)$ $=\int_{- \infty}^{w \sigma +\mu} \frac{1}{2\sigma} e^{-|x-\mu|/\sigma} \,dx$ \begin{array}{rcl} f(w) &=& \frac{d }{d w}F(w)=\frac{d }{d w}\int_{- \infty}^{w \sigma +\mu} \frac{1}{2\sigma}e^{-|x-\mu|/\sigma} \,dx \\ &=&\sigma \frac{1}{2\sigma} e^{-|w \sigma +\mu-\mu|/\sigma} = \frac{1}{2} e^{-|w|}, -\infty<w<\infty \end{array} We know $X = \sigma w +\mu$, $X^2 =( \sigma w +\mu)^2$, therefore: - $\text{E}(X)= \sigma \text{E}(w) +\mu$ - $\text{E}(X^2)=\sigma^2 \text{E}(W^2) +\sigma \mu \text{E}(W) +\mu ^2$ Then we need to find $\text{E}(W)$ and $\text{E}(W^2)$: \begin{array}{rcll} \text{E}(w) &=& \int_{-\infty}^{\infty} w \frac{1}{2} e^{-|w|}\,dw & \\ &=&0 & (\because w \frac{1}{2} e^{-|w|} \text{ is a odd function}) \end{array} <u>pf</u> odd function def.: $f(-y)= - f(y)$ let $f= w \frac{1}{2} e^{-|w|}$ $f(-y)= -y\frac{1}{2} e^{-|-y|}=-y\frac{1}{2} e^{-|y|}= f(y)$, 故得證 \begin{array}{rcll} \text{E}(w^2) &=& \int_{-\infty}^{\infty} w^2 \frac{1}{2} e^{-|w|}\,dw & \\ &=& 2 \int_{0}^{\infty} w^2 \frac{1}{2} e^{-|w|}\,dw & (\because w^2 \frac{1}{2} e^{-|w|} \text{ is a even function})\\ &=&\int_{0}^{\infty} w^2 e^{-w}\,dw & \\ &=&\Gamma (3) & (\text{by gamma funciton})\\ &=&2 \end{array} <u>pf</u> even function def.: $f(-y)= f(y)$ let $f= w^2 \frac{1}{2} e^{-|w|}$ $f(-y)= (-y)^2\frac{1}{2} e^{-|-y|}=y^2\frac{1}{2} e^{-|y|}= f(y)$, 故得證 $\text{E}(W)=0$ $\text{E}(W^2)=2$代入: - $\text{E}(X)=\sigma \times 0 +\mu=\mu$ - $\text{E}(X^2)=\sigma^2 \text{E}(W^2) +\sigma \mu \text{E}(W) +\mu ^2= 2\sigma^2 +\mu ^2$ $\text{Var}(X)= 2\sigma^2 +\mu ^2 -\mu ^2= 2\sigma^2$ ### 常態分布 :::info 這裡打極座標積分 ::: 由來: 需要極座標 source: https://chih-sheng-huang821.medium.com/%E7%B5%B1%E8%A8%88%E5%AD%B8-%E5%B8%B8%E6%85%8B%E5%88%86%E4%BD%88%E7%A9%8D%E5%88%86%E7%AD%89%E6%96%BC1-11e0a853c588 1. 簡單版 $\int_{-\infty}^{\infty}e^{x^2}$ $=\sqrt \pi$ $f_x= \frac{1} {\sqrt{2 \pi}\sigma}e^{\frac {-1}{2}\frac{\sum\limits^{n}(x_i- \mu)^2}{\sigma^2}}$ 還是要練積分啦嗚嗚嗚,看起來都要用極座標 https://statproofbook.github.io/P/norm-mean.html#:~:text=Proof%3A%20Mean%20of%20the%20normal%20distribution&text=E(X)%3D%CE%BC.,X(x)dx. 期望值跟變異數耳熟能詳,這裡只打$M_x(t)$,過程from 陳鄰安老師的講義: ![](https://hackmd.io/_uploads/SyXbzPzs2.png) $M_x(t)=e^{\mu t + \frac {\sigma^2 t^2}{2}}$ ::: info 處理重點:把e提出來,剩下的東西可積成1 ::: ### 卡方分配 > 因隨機變數初始撒下去會呈左峰態的分配,因而使用。 >長期下來(樣本數變多),卡方分配會變回常態分配。 $X~χ^2(n)=X~Gamma(\alpha = \frac{n}{2},\beta = 2)$ $E(X)=\alpha \beta = \frac{n}{2}\times 2=n$ $Var(X)= \alpha \beta^2 = \frac{n}{2}\times 2^2 = 2n$ $M_x(t)=(\frac{1}{1-\beta t})^\alpha=(\frac{1}{1-2t})^{\frac {n}{2}}$ #### 卡方分配的性質+證明 ##### 1. 若 $X~N(0,1)$,則$x^2~\chi^2(1)$ ###### <u>pf.</u>: find $x^2$ joint pdf ##### 2. 若$X_1,...X_n \overset{i.i.d}~N(0,1)$,則$Y=\sum\limits_{i=1}^{n}x_i^2~\chi^2(n)$ ###### <u>pf.</u>: $use M_x(t)$ the $M_x(t)$ of 1 chi square is $(\frac {1}{\lambda - t})^{n/2}$ $\prod\limits_{i=1}^{n}(\frac {1}{\lambda - t})^{n/2}$ ##### 3. If $X_1~\chi^2(m), X_2~\chi^2(n)$,則$Y=X_1+X_2~\chi^2(m+n)$ ###### <u>pf.</u>: the $M_x(t)$ of $X_1$ is $(\frac {1}{\lambda - t})^{m/2}$ the $M_x(t)$ of $X_2$ is $(\frac {1}{\lambda - t})^{n/2}$ 依$M_{X+Y}(t)=M_X(t)M_Y(t)$: $M_{X_1+X_2}(t)=(\frac {1}{\lambda - t})^{m/2}(\frac {1}{\lambda - t})^{n/2}$ $=(\frac {1}{\lambda - t})^{\frac {m+n}{2}}$ ##### 4.1 if $X_1...X_n~N(\mu, \sigma^2)$,且$\mu$已知,則:$Y=\frac{\sum (x-\mu)^2}{\sigma^2}~\chi^2(n)$ ##### 4.2 if $X_1...X_n~N(\mu, \sigma^2)$,且$\mu$未知,則:$Y=\frac{\sum (x-\bar x)^2}{\sigma^2}~\chi^2(n-1)$ ##### 5. $n \frac {(\bar x - \mu)^2}{\sigma^2}~\chi^2(1)$ ### Beta分配 ::: info :information_source: beta function: $\int_0^1t^{\alpha-1}(1-t)^{\beta -1}dt$ $=\frac {(\alpha -1)!(\beta -1)!}{(\alpha + \beta-1)!}$ $=\frac {Γ(α)Γ(β)}{Γ(α+β)}$ ::: $f_x=\frac {Γ(a+b)}{Γ(a)Γ(b)} x^{a-1}(1-x)^{b-1}, 0<x<1$ #### ++E(X)++ \begin{array}{rcll} \text{E}[X] &=& \frac {\Gamma (\alpha+\beta)}{\Gamma (\alpha)\Gamma(b)}\int_0^1 x^{\alpha} (1-x)^{\beta-1} \, dx &\\ &=&\frac {\Gamma (\alpha+\beta)}{\Gamma (\alpha)\Gamma(b)} \frac {\Gamma (\alpha +1)\Gamma(b)}{\Gamma (a+b+1)}& (\text{by beta function}) \\ &=&\frac{\alpha}{\alpha+\beta} & \end{array} #### ++VAR(X)++ \begin{array}{rcll} \text{E}[X^2] &=& \frac {\Gamma (\alpha+\beta)}{\Gamma (\alpha)\Gamma(b)}\int_0^1 x^{\alpha+1} (1-x)^{\beta-1} \, dx &\\ &=&\frac {\Gamma (\alpha+\beta)}{\Gamma (\alpha)\Gamma(b)} \frac {\Gamma(a+2)\Gamma(b)}{\Gamma (a+b+2)}& (\text{by beta function}) \\ &=& \frac{\alpha(\alpha +1)}{(\alpha+\beta)(\alpha+\beta+1)} & \end{array} $\text{Var}(X) = \frac{\alpha(\alpha +1)}{(\alpha+\beta)(\alpha+\beta+1)} - [\frac{\alpha}{\alpha+\beta}]^2= \frac{\alpha \beta}{(\alpha+\beta)^2 (\alpha+\beta+1)}.$ #### cdf(無聊再練習) ![](https://hackmd.io/_uploads/H1slS88q2.png) ### Weibull distribution > 從exp轉換過來 $f_Y(y)= \frac{\gamma }{\beta } y^{\gamma -1}e^{-\frac{y^\gamma}{\beta}}$, $y>0, \gamma >0$ #### ++E(X)++ \begin{array}{lllcl} \text{E}(Y) &=&\int_{0}^{\infty} y\frac{\gamma }{\beta } y^{\gamma -1}e^{-\frac{y^\gamma}{\beta}} \,dy &u = \frac{y^\gamma}{\beta} , du = \gamma \frac{y^{\gamma -1}}{\beta} dy& y = (u\beta )^{\frac{1}{\beta}} \\ &=& \int_{0}^{\infty} \frac{\beta }{\gamma }(u\beta )^{\frac{1}{\gamma }}\frac{\gamma}{\beta } e^{-\frac{u}{\beta}} \,du & &\\ &=& \int_{0}^{\infty} (u\beta )^{\frac{1 }{\gamma }}e^{u} \,du & &\\ &=& \beta^{\frac{1 }{\gamma }}e \int_{0}^{\infty} u^{\frac{1 }{\gamma }}e^{u} \,du & &\\ &= &\beta^{\frac{1 }{\gamma }} \Gamma (\frac{1 }{\gamma }+1) & (\text{by gamma function})& \end{array} #### ++VAR(X)++ \begin{array}{lllcl} \text{E}(Y^2) &=&\int_{0}^{\infty} y^2\frac{\gamma }{\beta } y^{\gamma -1}e^{-\frac{y^\gamma}{\beta}} \,dy &u = \frac{y^\gamma}{\beta} , du = \gamma \frac{y^{\gamma -1}}{\beta} dy& y = (u\beta )^{\frac{1}{\beta}} \\ &=& \int_{0}^{\infty} \frac{\beta }{\gamma }(u\beta )^{\frac{1}{\gamma }}\frac{\gamma}{\beta } e^{-\frac{u}{\beta}} \,du & &\\ &=& \int_{0}^{\infty} (u\beta )^{\frac{2 }{\gamma }}e^{-u} \,du & &\\ &=& \beta^{\frac{2 }{\gamma }}e \int_{0}^{\infty} u^{\frac{2 }{\gamma }}e^{-u} \,du & &\\ &=&\beta^{\frac{2 }{\gamma }} \Gamma (\frac{2 }{\gamma }+1) & (\text{by gamma function})& \end{array} \begin{array}{rcl} \text{Var}(Y)&=& \beta^{\frac{2 }{\gamma }} \Gamma (\frac{2 }{\gamma }+1) - [\beta^{\frac{1 }{\gamma }} \Gamma (\frac{1 }{\gamma }+1)]^2 \\ &=& \beta^{\frac{2}{\gamma }} \{\Gamma (\frac{2 }{\gamma }+1) -[\Gamma (\frac{1 }{\gamma }+1)]^2 \} \end{array} ## 分佈關係 ### poission and exponentail #### 基本差異 | 差異/分配名稱 | poission(λ) | exponentail(θ) | | ------------- | ---------------------------------- | -------------------------------------- | | scale meaning | 特定時間內發生多少次事件(=θ的倒數) | 平均每隔多少時間發生1次事件 (=λ的倒數) | | 舉例: 某月30天發生120次交通意外 | 一天平均有4次交通意外,λ=4 | 每$\frac{1}{4}$天發生一次交通意外,$θ=\frac{1}{4}$ | 由前可知兩者的scalar有倒數關係,且一為離散,一為連續。因此關係為: Let $X~Poi(\lambda)$, $Y ~Exp(\theta=\frac{1}{\lambda})$ $P(Y\le y)=P(X\ge 1)$ ### gamma and poission stat.infer DP126 因為Gramma跟Expexponentail有關係,所以跟piossion可以搭上邊,但要除以scalar參數。 Let $X~Poi(\frac{y}{\beta})$, $Y ~Γ(α,β)$ $P(Y\le y)=P(X\ge \alpha)$ **應用: 求piossion小樣本信賴區間**