```python #SVM from sklearn.svm import SVC, NuSVC, LinearSVC parameters = {'C':[1], 'probability':[True]} model = Pipeline([('vect', CountVectorizer()), ('tfidf', TfidfTransformer()), ('clf', GridSearchCV(SVC(), parameters, cv=5, iid=False))]) ``` ```python fit_predict(model,X_after_train1,y_train1,X__after_test,y_test) ```