```python #SVM from sklearn.svm import SVC, NuSVC, LinearSVC parameters = {'C':[1], 'probability':[True]} model = Pipeline([('vect', CountVectorizer()), ('tfidf', TfidfTransformer()), ('clf', GridSearchCV(SVC(), parameters, cv=5, iid=False))]) ``` ```python fit_predict(model,X_after_train1,y_train1,X__after_test,y_test) ```
×
Sign in
Email
Password
Forgot password
or
By clicking below, you agree to our
terms of service
.
Sign in via Facebook
Sign in via Twitter
Sign in via GitHub
Sign in via Dropbox
Sign in with Wallet
Wallet (
)
Connect another wallet
New to HackMD?
Sign up