--- title: 109/12/03 --- ## Paper ### 特徵檢測 [Look Closer to See Better: Recurrent Attention Convolutional Neural Network for Fine-grained Image Recognition(CVPR2017)](https://openaccess.thecvf.com/content_cvpr_2017/papers/Fu_Look_Closer_to_CVPR_2017_paper.pdf) ![](https://i.imgur.com/Aa7MGFY.png) 有點像做bounding box的效果 ### 改善模型方面 [Squeeze-and-Excitation Networks (2017)](https://arxiv.org/pdf/1709.01507.pdf) ![](https://i.imgur.com/R1lhySe.png) 將channel attention加入現有的模型,並改善了原有的效果 [CBAM: Convolutional Block Attention Module (2018)](https://arxiv.org/pdf/1807.06521v2.pdf) ![](https://i.imgur.com/nBDlvNp.png) 提出一個新的block包含channel attention和spatial ttention [AN IMAGE IS WORTH 16X16 WORDS:TRANSFORMERS FOR IMAGE RECOGNITION AT SCALE (2020/10/22,ICLR 2021)](https://arxiv.org/pdf/2010.11929.pdf) NLP概念取代傳統CNN結構,包含MSA、MLP等不同的概念