# Generative or Contrastive ###### tags: `Reid paper survey` # InfoMax-GAN: Improved Adversarial Image Generation via Information Maximization and Contrastive Learning - https://openaccess.thecvf.com/content/WACV2021/papers/Lee_InfoMax-GAN_Improved_Adversarial_Image_Generation_via_Information_Maximization_and_Contrastive_WACV_2021_paper.pdf * unknow - Note that variational的思想就是針對某個分佈很難求解的時候,採用另外一個分佈來近似這個分佈的做法,並使用變分信息最大化(論文:The IM algorithm: A variational approach to information maximization)的方法求解變分下界 https://blog.csdn.net/winycg/article/details/105297089 * tip - Contrastive learning - 最大化編碼的局部和全局特徵之間的互信息 * Abstract * nfoMax-GAN - projection to high dim(Reproducing Kernel Hilbert Space (RKHS) [2],), which exploits the value of linear evaluation in capturing similarities between the global and local features - ![](https://i.imgur.com/ViLpB6B.png) # Self-supervised Learning: Generative or Contrastive - https://zhizhou-yu.github.io/2020/06/26/Self-supervised-Learning-Generative-or-Contrastive.html * 自監督表示學習利用輸入數據本身作為監督信號 * Self-Supervised vs un-Supervised - ![](https://i.imgur.com/WNvWzBJ.png) # ContraGAN: Contrastive Learning for Conditional Image Generation - https://arxiv.org/abs/2006.12681 * 一般GAN的z 試real image+noise? * Tip - 同一個batch下做contrastive - An epoch is comprised of one or more batches - 一般GAN (unsupervised) - https://medium.com/%E9%9B%9E%E9%9B%9E%E8%88%87%E5%85%94%E5%85%94%E7%9A%84%E5%B7%A5%E7%A8%8B%E4%B8%96%E7%95%8C/%E6%A9%9F%E5%99%A8%E5%AD%B8%E7%BF%92-ml-note-generative-adversarial-network-gan-%E7%94%9F%E6%88%90%E5%B0%8D%E6%8A%97%E7%B6%B2%E8%B7%AF-c672125af9e6 - https://zhuanlan.zhihu.com/p/337723355 - Conditional GAN (supervised) - G(pair train) - Conditional Discriminator - 除了要分辨真假,還要判斷c&x pair 有多合適 - ![](https://i.imgur.com/zzsHlnD.png) - 對於生成器而言,也希望能夠分類正確,當時希望判別器不能正確分辨假數 據。 * Abstract - ContraGAN的判別器判別給定樣本的真實性,並最大程度地減少對比目標,以學 習訓練圖像之間的關係。 - ContraGAN that considers data-to-class relations by using a conditional contrastive loss * Introduction - motivated by ACGAN and ProjGAN,一般的GAN只考慮 data-to-class - In this manner, the discriminator can capture not only data-to-class but also data-to-data relations between samples. - 結合對比學習就是如何構造正負樣本的問題 * Background - Generative Adversarial Networks - a discriminator to synthesize realistic images - whether the given images are synthesized or not, - the generator (G) tries to fool the discriminator by generating realistic images from noise vectors - ![](https://i.imgur.com/WnRv9e1.png) - D(x)表示D網路判斷真實圖片是否真實的概率,對於D來說,這個值越接近1 越好。 - D(G(z))是D網路判斷G生成的圖片的是否真實的概率,對於D來說,這個值 越接近0越好,對於G來說,這個值越接近1越好。 - GAN中有二個Neural Network需要去Train - Conditional GANs - synthesize realistic images is utilizing class label information * method - preal(x) : ) is the real data distribution - pz(z) is a predefined prior distribution, typically multivariate Gaussian - X : a randomly sampled minibatch of training images