# (7/6)Liquids and Solids --- ## 10.1 Intermolecular Forces ---- ### Dipole–Dipole Forces(偶極-偶極力) ![](https://i.imgur.com/DvGSpbS.png) - 1% as strong as covalent or ionic bonds1% as strong as covalent or ionic bonds - rapidly become weaker as the distance between the dipoles increases ---- ### hydrogen bonding(N-H, O-H, F-H) **causes** - the great polarity of the bond - close approach of the dipoles **effects** - high boiling point ![](https://i.imgur.com/rB08LOc.png) ---- ### London Dispersion Forces(倫敦分散力) **causes** ![](https://i.imgur.com/0ajtomK.png) **effects** ![](https://i.imgur.com/kS7QoQk.png) - the importance of London dispersion forces increases greatly as the size of the atom increases --- ## 10.2 The Liquid State Structural Model for Liquids ---- ### surface tension(表面張力) - liquids with relatively large intermolecular forces, tend to have relatively high surface tensions. ![](https://i.imgur.com/XGtsEAI.png) ---- ### capillary action(毛細現象) - **cohesive forces(內聚力)** the intermolecular forces among the molecules of the liquid - **adhesive forces(附著力)** Adhesive forces occur when a container is made of a substance that has polar bonds ![](https://i.imgur.com/7HpAMCW.png) ---- ### viscosity(延滯姓) |-|**glycerol(甘油)**|**gasoline**| |-|-|-| |cause|hydrogen bonds|molecular complexity| |structure|![](https://i.imgur.com/yse2SXJ.png)|![](https://i.imgur.com/PnEFRoX.png)| --- ## 10.3 An Introduction to Structures and Types of Solids ---- ![](https://i.imgur.com/8AZG4k0.png) - crystalline solids(晶形固體) - noncrystalline (amorphous) solids(非晶\[形\]固體) ---- ### X-Ray Analysis of Solids ![](https://i.imgur.com/jhD0yb7.png) - X-ray diffraction( X-光繞射) $xy + yz = 2d sin θ$ $nλ = 2d sin θ$ ---- ### Types of Crystalline Solids - ionic solids - molecular solids - atomic Solids + Metallic + Network + Group 8A --- ## 10.4 Structure and Bonding in Metals ---- ### Metals - properties : high thermal and electrical conductivity, malleability(敲打塑形), and ductility(延展) - cause : nondirectional covalent bonding ---- ![](https://i.imgur.com/vjpJCgG.png) ---- ![](https://i.imgur.com/Vy9FOev.png)[^cp] [^cp]:(http://www.physics.nptu.edu.tw/ezfiles/116/1116/attach/21/pta_23883_3192466_13359.pdf) ![](https://i.imgur.com/apiIFxt.png) - close-packing ---- ![](https://i.imgur.com/tM4NjN1.png)![](https://i.imgur.com/eFRDzpz.png) ----- ![](https://i.imgur.com/YondANN.png) - hexagonal close-packed(hcp) ---- ![](https://i.imgur.com/vVbapCJ.png) - cubic close-packed(c) ---- ![](https://i.imgur.com/ngsmtx4.png) - face-centered cubic(fcc) = cubic closest packing(ccp) $(1/8 * 8) + (1/2 * 6) = 4(atoms)$ ---- **Calculating the Density of a Closest Packed Solid** >Silver crystallizes in a **cubic closest packed structure**. The radius of a silver atom is 144 pm. Calculate the density of solid silver. ---- > **Solution** >![](https://i.imgur.com/IakAHyS.png)![](https://i.imgur.com/zRrfxnj.png) ---- ### Bonding Models for Metals - strong and nondirectional ---- **electron sea model** ![](https://i.imgur.com/NReU8S6.png) - explain : high thermal and electrical conductivity, malleability, ductility ---- **band model (能帶), molecular orbital (MO) model (分子軌域)** ![](https://i.imgur.com/Mqp4oai.png) - explain : 光學性質 ---- ### Metal Alloys(合金) **substitutional alloy (取代型合金)** ![](https://i.imgur.com/DhHrxYp.png) **interstitial alloy (間隙型合金)** ![](https://i.imgur.com/F2Bk9YC.png) - directional carbon–iron bonds - harder, stronger, and less ductile than pure iron --- ## 10.5 Carbon and Silicon: Network Atomic Solids ---- ### Carbon ![](https://i.imgur.com/4MaVYt9.png) ---- ![](https://i.imgur.com/G78OsZi.png) ---- |-|electricity|color|bond|hybridized carbon atomic orbitals| |-|-|-|-|-| |Diamond|insulator|colorless|hard|sp<SUP>3</SUP>| |Graphite|conductor|black|slippery|sp<SUP>2</SUP>| ---- ### Silicon(Si) - SiO<sub>2</sub> : silica - 單體 : SiO<sub>4</sub><sup>4-</sup> ![](https://i.imgur.com/EcFONG3.png) ---- ![](https://i.imgur.com/SZGhjLL.png) ---- **SiO<sub>2</sub> vs. CO<sub>2</sub>** ![](https://i.imgur.com/rw5pHL9.png) `作者:台大化學系 蔡蘊明教授` ---- ### Glass : **silica** **amorphous solid** called a **glass** results . Note that a glass contains a good deal of **disorder**, in contrast to the crystalline nature of quartz(石英). ![](https://i.imgur.com/DmDHQCX.png) ---- |Type of Glass/Various Components(%)|SiO<SUB>2</SUB>|CaO|Na<SUB>2</SUB>O|B<SUB>2</SUB>O<SUB>3</SUB>|Al<SUB>2</SUB>O<SUB>3</SUB>|K<SUB>2</SUB>O|MgO| |-|-|-|-|-|-|-|-| |Window (soda-lime glass)-鈉鈣玻璃|72|11|13|-|0.3|3.8|-| |Cookware (aluminosilicate glass)|55|15|-|-|20|-|10| |Heat-resistant (borosilicate glass)-派瑞斯玻璃Pyrex|76|3|5|13|2|0.5|-| |Optical-鉀玻璃|69|12|6|0.3|-|12|-| ---- ### Ceramics (陶瓷) hightech materials stability at high temperatures and resistance to corrosion ---- ### Semiconductors ![](https://i.imgur.com/yD1yGBh.png) - n-type semiconductor : 5 valence electrons(As) - p-type semiconductor : 3 valence electrons(B) ---- ![](https://i.imgur.com/mLQ4RUI.png) - holes : ![](https://i.imgur.com/g5cGqrs.png) - electrons :![](https://i.imgur.com/iCY7Ng3.png) ---- ![](https://i.imgur.com/UgIXvB0.png) - reflictier(整流器) : a device that produces a pulsating direct 0current (flows in one direction) from alternating current (flows in both directions alternately). - forward bias(二極體) --- ## 10.6 Molecular Solids ---- ### No dipole moments - as the size of the molecules increases, **the London forces** become quite large, causing many of these substances to be solids at 25°C. ![](https://i.imgur.com/Lt48rA0.png) - a) Sulfur crystals (yellow) contain S<sub>8</sub> molecules. (b) White phosphorus ( containing P<sub>4</sub> molecules) is so reactive with the oxygen in air that it must be stored under water. ---- |Solid|Distance Between Atoms in Molecule*|Closest Distance Between Molecules in the Solid| |-|-|-| |**P<SUB>4</SUB>**|220 pm|380 pm| |**S<SUB>8</SUB>**|206 pm|370 pm| |**Cl<SUB>2</SUB>**|199 pm|360 pm| *The shorter distances within the molecules indicate stronger bonding ---- ### With dipole moments - intermolecular forces are significantly greater, especially when hydrogen bonding is possible ![](https://i.imgur.com/XuEejvv.png) ![](https://i.imgur.com/SMg1Vo1.png) --- ## 10.7 Ionic Solids ---- ![](https://i.imgur.com/XD79npr.png) trigonal< tetrahedral < octahedral ---- ![](https://i.imgur.com/9asMU1k.png) - tetrahedral holes : 8 - S<sup>2-</sup> ions (yellow), Zn<sup>2+</sup> ions (purple) - electrical neutrality - Zn<sup>2+</sup> : 4 ---- ![](https://i.imgur.com/ox6ue3c.png) - NaCl - octahedra ---- ### fundamental principles of ionic solids - maximize attractions - minimize repulsions - 穩定 --- ## 10.8 Vapor Pressure and Changes of State ---- The energy required to vaporize 1 mole of a liquid at a pressure of 1 atm is called the **heat of vaporization**, **enthalpy of vaporization**, or $ΔH_{vap}$ ---- ### Vapor Pressure ![](https://i.imgur.com/yiTpbwB.png) - # $T_1<T_2$ (剛剛寫錯了) - At this point no further net change occurs in the amount of liquid or vapor because the two opposite processes exactly balance each other; the system is at **equilibrium** ---- ### *Equation* $$ \begin{align} \ln(P_{vap})&=-\dfrac{ΔH_{vap}}{R}(\dfrac{1}{T})+C\\ \\ \ln({P_{vap,T_1}})+\dfrac{ΔH_{vap}}{R{T_1}}&=C=\ln({P_{vap,T_2}})+\dfrac{ΔH_{vap}}{R{T_2}}\\ \\ \ln(\dfrac{P_{vap,T_1}}{P_{vap,T_2}})&=\dfrac{ΔH_{vap}}{R}(\dfrac{1}{T_2}-\dfrac{1}{T_1})\\ \end{align} $$ ![](https://i.imgur.com/i9bUc0G.png) ---- > ### Example > >**Calculating Vapor Pressure** The vapor pressure of water at 25°C is 23.8 torr, and the heat of vaporization of water at 25°C is 43.9 kJ/mol. > >Calculate the vapor pressure of water at 50.°C. >- In solving this problem, we **ignore** the fact that $ΔH_{vap}$ is **slightly temperature dependent** ---- >### Solution >$$ \begin{align} \ln(\dfrac{P_{vap,T_1}}{P_{vap,T_2}})&= \dfrac{ΔH_{vap}}{R}(\dfrac{1}{T_2}-\dfrac{1}{T_1})\\ \end{align} $$ >For water we have $$ \begin{align} P_{vap,T_1}&=23.8torr\\ T_1&=298K\\ T_2&=323K\\ ΔH_{vap}&=43.9kJ/mol&\\ &=43900J/mol\\ R&=8.3145/K·mol \end{align} $$ Thus $$ \begin{align} \ln(\dfrac{23.8 torr}{P_{vap,T_2}(torr)})&=\dfrac{43,900 J/mol}{8.3145 J/K·mol}(\dfrac{1}{323K}-\dfrac{1}{298K})\\ \ln(\dfrac{23.8 torr}{P_{vap,T_2}})&=-1.37\\ \end{align} $$ Taking the antilog of both sides gives $$ \begin{align} \dfrac{23.8}{P_{vap,T_2}}&=0.254\\ P_{vap,T_2}&=93.7torr\\ \end{align} $$ ---- ### Changes of State heat of fusion = enthalpy of fusion, $ΔH_{fus}$ |Compound|Melting Point(℃)|Enthalpy of Fusion(kJ/mol)| |-|-|-| |O<sub>2</sub>|-218|0.45| |HCl|-114|1.99| |HI|-51|2.87| |CCl<sub>4</sub>|-23|2.51| |CHCl<sub>3</sub>|-64|9.20| |H<sub>2</sub>O|0|6.02| |NaF|992|29.3| |NaCl|801|30.2| ---- ![](https://i.imgur.com/XtbokdH.png) - The melting and boiling points for a substance are determined by the vapor pressures of the solid and liquid states ---- **The normal melting point** is defined as the temperature at which the solid and liquid states have **the same vapor pressure** under conditions where the total pressure is 1 atmosphere ![](https://i.imgur.com/35BxOW5.png) - Boiling occurs when the vapor pressure of a liquid becomes equal to the pressure of its environment. - The normal boiling point of a liquid is the temperature at which the vapor pressure of the liquid is exactly 1 atmosphere ---- ### supercooled ![](https://i.imgur.com/qdphUmd.png) <iframe width="912" height="500" src="https://www.youtube.com/embed/_9N-Y2CyYhM" title="YouTube video player" frameborder="0" allow="accelerometer; autoplay; clipboard-write; encrypted-media; gyroscope; picture-in-picture" allowfullscreen></iframe> ---- ### superheated <iframe width="912" height="513" src="https://www.youtube.com/embed/sn_g_LurLmg" title="YouTube video player" frameborder="0" allow="accelerometer; autoplay; clipboard-write; encrypted-media; gyroscope; picture-in-picture" allowfullscreen></iframe> - can be avoided by adding boiling chips --- ## 10.9 Phase Diagrams(三相圖) ---- ![](https://i.imgur.com/bpvPgJ3.png)![](https://i.imgur.com/4uJEaNo.png) ---- **Experiment 1** - 1 atm - mp : 0℃ - bp : 100℃ ---- **Experiment 2** - 2.0 torr - sublime at -10℃ ---- **Experiment 3** - 4.58 torr - **triple point**, all three states of water are present at 0.01℃ (273.16 K) ---- **Experiment 4** - **critical point** 374℃ and 218 atm - intermediate “fluid” ---- ### Applications of the Phase Diagram for Water ![](https://i.imgur.com/zWtvbXD.png) ---- ### ice skating narrow blade : large pressure frictional heating : melting of the ice [^1]        ![](https://i.imgur.com/wznRCUk.png) ---- ### Boiling Point of Water at Various Locations |Location|Feet Above Sea Level|Patm (torr)|Boiling Point (℃)| |-|-|-|-| |Top of Mt. Everest|29,028|240|70| |New York City|10|760|100| |Death Valley|-282|770|100.3| ---- ### The Phase Diagram for Carbon Dioxide ![](https://i.imgur.com/RVYihgB.png) - dry ice - fire extinguishers - supercritical fluids - extraction(cafeine etc.) - ![](https://i.imgur.com/CAVc23c.png)[^2] <iframe width="1280" height="720" src="https://www.youtube.com/embed/GEr3NxsPTOA" title="YouTube video player" frameborder="0" allow="accelerometer; autoplay; clipboard-write; encrypted-media; gyroscope; picture-in-picture" allowfullscreen></iframe> [^1]:The physics of ice skating is quite complex, and there is disagreement about whether the pressure or the frictional heating of the ice skate is most important. See “Letter to the Editor,” by R. Silberman, J. Chem. Ed. 65 (1988): 186. [^2]:[Application of Supercritical Fluids. Yoshiaki Fukusima](https://www.tytlabs.com/english/review/rev351epdf/e351_057fukusima.pdf)