--- tags: MAT224-Organize --- # Midterm 2 Grading Scheme [**GO BACK TO INFORMATION PAGE**](http://224.y7y.cc) Use navigation on right bar for your convenience, or use it with links in this page. Problem|Note -|- [Problem 1](#Problem-1)|20 marks [Problem 2](#Problem-2)|20 marks [Problem 3](#Problem-3)|10 marks [Problem 4](#Problem-4)|20 marks [Problem 5](#Problem-5)|8 marks [Problem 6](#Problem-6)|12 marks $$ \newcommand{\spann}{\mathrm{span}} \newcommand{\0}{\vec 0} \newcommand{\mat}[1]{\begin{pmatrix}#1\end{pmatrix}} \newcommand{\dd}{\mathrm{d}} \newcommand{\map}[3]{#1:#2\longrightarrow #3} \newcommand{\ww}{\vec w} \newcommand{\uu}{\vec u} \newcommand{\N}{\mathbb{N}} \newcommand{\F}{\mathbb{F}} \newcommand{\Z}{\mathbb{Z}} \newcommand{\Q}{\mathbb{Q}} \newcommand{\R}{\mathbb{R}} \newcommand{\ba}{\mathbf{a}} \newcommand{\bb}{\mathbf{b}} \newcommand{\bc}{\mathbf{c}} \newcommand{\br}{\mathbf{r}} \newcommand{\ZZ}{\mathbb{Z}} \newcommand{\bi}{\mathbf{i}} \newcommand{\bj}{\mathbf{j}} \newcommand{\bk}{\mathbf{k}} \newcommand{\bu}{\mathbf{u}} \newcommand{\bv}{\mathbf{v}} \newcommand{\vv}{\vec{v}} \newcommand{\bw}{\mathbf{w}} \newcommand{\zero}{\mathbf{0}} \newcommand{\Proj}{\mathrm{proj}} \newcommand{\Perp}{\mathrm{perp}} \newcommand{\proj}{\mathrm{proj}} \newcommand{\Span}{\mathrm{span}} \newcommand{\Null}{\mathrm{null}} \newcommand{\Rref}{\mathrm{rref}} \newcommand{\rref}{\Rref} \newcommand{\im}{\mathrm{Im}} \newcommand{\Rank}{\mathrm{rank}} \newcommand{\rank}{\Rank} \def\t{\@tt|\em\@gobble\@ttt} \def\em\@tt#1\em{\@tt|\em} \def\cm\@tt#1\em#2\@ttt{ \begin{tabular}{#1} \hline #2 \\\hline \end{tabular}\@gobble } \def\@tt#1\@ttt#2{ \@ifnextchar,{\@tt #1 & #2\\\hline\expandafter\expandafter\expandafter\@gobble\expandafter\@gobble\@gobble\@ttt}{ \@ifnextchar.{\cm\@tt|l #1 & #2\@ttt}{\@tt|l #1 & #2\@ttt} } } \def\m{\@tut\@gobble\@tutt} \def\@tut#1\@tutt#2{ \@ifnextchar,{\@tut #1 & #2\\\expandafter\expandafter\expandafter\@gobble\expandafter\@gobble\@gobble\@tutt}{ \@ifnextchar.{\begin{pmatrix}#1 &#2\end{pmatrix}\@gobble}{\@tut #1 & #2\@tutt} } } \def\bm{\@tuut\@gobble\@tuutt} \def\@tuut#1\@tuutt#2{ \@ifnextchar,{\@tuut #1 & #2\cr\expandafter\expandafter\expandafter\@gobble\expandafter\@gobble\@gobble\@tuutt}{ \@ifnextchar.{\bordermatrix{#1 &#2\cr}\@gobble}{\@tuut #1 & #2\@tuutt} } } $$ # Problem 1 [Go top](#Midterm-2-Grading-Scheme) **Solution**:FFTFF **Grading Policy:** - For True Questions, True= 4pt, False=0pt - For False Questions, True = 0pt, False + incorrect Counter example = 2pt, False+ correct Counter Example = 4pt. - Problem 1.4: If student say need $\ker\perp\im$, it still consider correct even if they do not have a counter example - Problem 1.3: If student say false but his counter example saitiesfies all condition, partial marks: 2pt. : # Problem 2 [Go top](#Midterm-2-Grading-Scheme) **Solution**: $$ \dim(\ker (T^2))=6 $$ $$ \dim(\ker (T^4))=10 $$ $$ \dim\left(\mathrm{Im} (T^2)\cap\ker (T^3)\right)=6 $$ $$ \dim(\mathrm{Im} (T^7)) = 0 $$ $$ \dim\left(\ker(T+I)\right) =0 $$ **Grading Policy:** - Each answer is 2 marks. No partial credits. # Problem 3 [Go top](#Midterm-2-Grading-Scheme) **Navigation** Problem|Note -|- [Problem 3 a)](#Problem-3a)|5 marks [Problem 3 b)](#Problem-3b)|5 marks [Problem 3 c)](#Problem-3c)|10 marks ## Problem 3a [go back](#Problem-3) **Solution** We want to show if there exists $a_1,a_2,a_3,a_4,a_5\in\mathbb{C}$ such that $$ a_1T^2(\vv)+ a_2T(\vv)+ a_3\vv+ a_4T(\ww)+ a_5\ww=\0 $$ Then $a_1=a_2=a_3=a_4=a_5=0$. (**3 marks**) Apply $T^2$ we have $$ a_3T^2(\vv)=\0 $$ Since $\vv\neq\0$ Therefore $a_3=0$. So we left $$ a_1T^2(\vv)+ a_2T(\vv)+ a_4T(\ww)+ a_5\ww=\0 $$ Apply $T$ we have $$ a_2T^2(\vv)+a_5T(\ww)=\0 $$ Since $\{T(w),T^2(v)\}$ is linearly independent, we have $a_2=a_5=0$ So we left $$ a_1T^2(\vv)+a_4T(\ww)=\0 $$ Since $\{T(w),T^2(v)\}$ is linearly independent, we have $a_1=a_4=0$. **Grading Policy:** - Set up what to prove correctly: at least **3 marks** - Minor Issue in set up but set up almost correctly **2 marks** ## Problem 3b [go back](#Problem-3) **Solution** We want to show $T(W)\subset W$. Since $$ T(\{T^2(\vv),T(\vv),\vv,T(\ww),\ww\})=\{T^3(\vv),T^2(\vv),T(\vv),T^2(\ww),T(\ww)\}=\{\0,T^2(\vv),T(\vv),T(\ww)\}\subset W $$ Therefore $$ T(W) = T(\spann\{T^2(\vv),T(\vv),\vv,T(\ww),\ww\})=\spann\{\0,T^2(\vv),T(\vv),T(\ww)\}\subset \spann W=W. $$ **Grading Scheme** - Set up what to prove correctly: at least **3 marks** - Minor Issue in set up but set up almost correctly **2 marks** - If they calculated out $$ T|_W\mat{T^2(v)& T(v)& v& T(w)& w}=$$$$\mat{T^2(v)& T(v)& v& T(w)& w}\mat{0&1&0&0&0\\0&0&1&0&0\\0&0&0&0&0\\0&0&0&0&1\\0&0&0&0&0} $$ And then conclude it is invariant subspace, that is also correct. ## Problem 3c [go back](#Problem-3) **Solution** $$ T|_W\mat{T^2(v)& T(v)& v& T(w)& w}=$$$$\mat{T^2(v)& T(v)& v& T(w)& w}\mat{0&1&0&0&0\\0&0&1&0&0\\0&0&0&0&0\\0&0&0&0&1\\0&0&0&0&0} $$ Or they can just write $$ \mat{0&1&0&0&0\\0&0&1&0&0\\0&0&0&0&0\\0&0&0&0&1\\0&0&0&0&0} $$ **Grading Policy:** - Minor number issue **-1 marks** - **If they have fatal issue, like say T=matrix, take 4 points off** # Problem 4 [Go top](#Midterm-2-Grading-Scheme) **Navigation** Problem|Note -|- [Problem 4 a)](#Problem-4a)|5 marks [Problem 4 b)](#Problem-4b)|8 marks [Problem 4 c)](#Problem-4c)|8 marks [Problem 4 d)](#Problem-4d)|5 marks ## Problem 4a [go back](#Problem-4) **Solution** $\dim(\ker T)=2$, $\dim(\ker T^2)=4$, $\dim(\ker T^3)=6$ **Grading Policy** - Each correct Answer is 2 points ## Problem 4b [go back](#Problem-4) **Solution** $$ \mat{0&1&0&0&0&0\\0&0&1&0&0&0\\0&0&0&0&0&0\\0&0&0&0&1&0\\0&0&0&0&0&1\\0&0&0&0&0&0} $$ **Marking Scheme** - If they did wrong because the last question wrong, give full credits if their answer is correct based on last question. - Minor number issue **-1 marks** - **If they have fatal issue, like say T=matrix, take 2 points off** - If they did not write down JCF but draw correct tableau, **3 marks** # Problem 5 [Go top](#Midterm-2-Grading-Scheme) **Navigation** Problem|Note -|- [Problem 5 a)](#Problem-5a)|7 marks [Problem 5 b)](#Problem-5b)|7 marks [Problem 5 c)](#Problem-5c)|8 marks [Problem 5 d)](#Problem-5d)|8 marks ## Problem 5a [go back](#Problem-5) **Solution** We want to show there exists $n$ such that $(S\circ T)^n=0$, here $\map 0VV$ means the zero operator. Since $T\circ S$ is nilpotent, there exists some integer $m$ such that $(T\circ S)^m=0$. Therefore let $n=m+1$ then $$ (S\circ T)^n=(S\circ T)^{m+1}=S\circ(T\circ S)^m\circ T=S\circ 0\circ T=0 $$ Therefore $S\circ T$ is a nilpotent operator. **Grading Policy:** - Please note there are other methods, they could use that the characteristic polynomial of ST and TS only differ by a factor of $\lambda$ and that operator is nilpotent if and only if eigenvalue are all 0. - If they set up (Wish to show...)correctly, at least give **3 marks**: - If they interpretes definition correctly, by saying we know that $(T\circ S)^m=0$ for some $m$: **2marks**. - Minor issue or minor issue in set up **-1 mark** ## Problem 5b [go back](#Problem-5) **Solution** We would like to show $T(\im(T))\subset\im(T)$, that is to show for any $\vv\in\im(T)$, $T\vv\in\im(T)$. To prove, choose $\ww=\vv$, therefore we find some $\ww\in V$ that $T\vv=T\ww$, therefore $T\vv\in\im(T)$. (One can also say $T\vv\in\im(T)$ is clearly true.) **Marking Scheme** <!--- They can also use the theorem in slides, if they say since $T$ is commutative with $T$, any image or kernel of the operator commute with $T$ is invariant subspace, it is fine. --> - Set up what to prove correctly: at least **3 marks** - Minor Issue in set up but set up almost correctly **-1 marks** ## Problem 5c [go back](#Problem-5) **Solution** We wish to show, **if** there exists an inverse $$\map{(T\circ S)^{-1}}WW$$ such that $(T\circ S)^{-1}(T\circ S)=I_W$ and $(T\circ S)\circ(T\circ S)^{-1}=I_W$, \textbf{THEN} for any $\ww\in W$, $S(\ww)=\0$(injective) and that for any $\ww\in W$, there exists $\vv\in V$ so that $T(\vv)=\ww$ (surjective). Indeed, if $S(\ww)=\0$, then $$ S\circ (T\circ S)^{-1}(\ww)=(T\circ S)^{-1}\0=\0 $$ This implies $$ \ww=I_W(\ww)=T\circ S\circ (T\circ S)^{-1}(\ww) = T\0=\0 $$ So $S$ is an injective. Further, to show $T$ is a surjective, for any $\ww\in W$ Let $$ \vv=S\circ(T\circ S)^{-1}(\ww) $$ Then $$ T(\vv)=T\circ S\circ(T\circ S)^{-1}(\ww)=I_W(\ww)=\ww. $$ Therefore $T$ is a surjective. **Marking Scheme** <!--- They can also use the theorem in slides, if they say since $T$ is commutative with $T$, any image or kernel of the operator commute with $T$ is invariant subspace, it is fine. --> - If they directly use invertible as isomorphism, it is fine - **They can also use left factor of surjective is surjective, right factor of injective is injective** But they have to first say: because $T\circ S$ is invertible, then it is both injective and surjective - Set up what to prove correctly: at least **4 marks** - Set up one direction correctly: **2 marks** - Minor Issue in set up but set up almost correctly **-1 marks** ## Problem 5d [go back](#Problem-5) **Solution** ($\Leftarrow$ ) We wish to show if $\mathrm{Im}(T) \subseteq \ker(S)$ then $S\circ T=0$, which is to show $S\circ T(\vv)=\0$ for any $\vv\in V$. Indeed, $T(\vv)\in \im(T)\subset \ker(S)$, so $T(\vv)\in\ker(S)$ so $S\circ T(\vv)=S(T(\vv))=0$. ($\Rightarrow$) We wish to show if $S\circ T=0$, then $\mathrm{Im}(T) \subseteq \ker(S)$, this is to show for any $\ww\in W$ such that $\ww=T(\vv)$ for some $\vv\in V$, we have $S(\vv)=0$. Indeed, if $\ww=T(\vv)$, $$ S(\ww)=S(T(\vv))=S\circ T(\vv)=0(\vec{v})=\0 $$ - Set up what to prove correctly: at least **4 marks** - Set up one direction correctly: **2 marks** - Minor Issue in set up but set up almost correctly **-1 marks** # Problem 6 [Go top](#Midterm-2-Grading-Scheme) **10 marks** The Jordan Canonical Form is tehrefore $$ \mat{0&1&0&0&0&0\\0&0&1&0&0&0\\0&0&0&1&0&0\\0&0&0&0&0&0\\0&0&0&0&0&0\\0&0&0&0&0&0} $$ or $$ \mat{0&1&0&0&0&0\\0&0&1&0&0&0\\0&0&0&1&0&0\\0&0&0&0&0&0\\0&0&0&0&0&1\\0&0&0&0&0&0} $$ **Marking Scheme** - Minor number issue **-1 marks** - If Among them there is only one correct: Give them 4 points. - Among them there is two correct: Give them 8 points. - Did one correct but missing the other: 6 points. - Did all two correct: 10 points. - For only drawing Young Tableau, only substract 1 point based on it