**Ex 7** Suppose $$W=\mathrm{span}(1,x)$$ $$W_1=\mathrm{span}(x^2,x^3)$$ $$W_2=\mathrm{span}(1+x+x^2+x^3,1+x+x^2-x^3)$$ Show that $$ P_3=W\oplus W_1 $$ and $$ P_3=W\oplus W_2 $$ **Proof** Firstly, we prove that $$ P_3=W\oplus W_1. $$ It suffices to show that $$ P_3=W+W_1 $$ and $$ W\cap W_1=\{\vec 0\} $$ To show $W\cap W_1=\{\vec 0\}$, it suffices to show that for any $\vec v\in W\cap W_1$, we have $\vec v=\vec 0$. Indeed, since $\vec v\in W$ and $\vec v\in W_1$, there exists scalars $a_1,a_2,a_3,a_4\in \mathbb R$ such that $$ \vec v = a_1\cdot 1+a_2\cdot x $$ and $$ \vec v = a_3\cdot x^2+a_4\cdot x^3. $$ Therefore $$ \vec v(x)=a_1+a_2x=a_3x^2+a_4x^3 $$ Let $x=0$, we have $$ a_1+a_2\cdot 0=a_3\cdot 0+a_4\cdot 0 = 0 $$ So $a_1=0$. Therefore $$ \vec v(x)=a_2x=a_3x^2+a_4x^3 $$ Taking derivative with respect to $x$, we have $$ a_2=2a_3\cdot x+3a_4\cdot x^2 $$ Let $x=0$, we have $$ a_2=0. $$ Therefore, $\vec v(x)=a_1+a_2\cdot x=0+0\cdot x=0$. This completes the proof that $\vec v=\vec 0$. </br></br></br></br></br></br></br> Then we show that $$ P_3=W\oplus W_2. $$